Trong cuốn “An incomplete Education” (Một nền giáo dục không đầy đủ), Judy Johns và William Wilson viết:
-Định Lý Gödel cũng được sử dụng để lý luận rằng máy tính sẽ chẳng bao giờ thông minh như con người, bởi vì phạm vi hiểu biết của nó bị giới hạn bởi một hệ tiên đề cố định, trong khi con người có thể khám phá ra những chân lý không thể dự đoán trước …
-Định lý này cũng đóng một vai trò quan trọng trong lý thuyết ngôn ngữ hiện đại, trong đó người ta nhấn mạnh rằng khả năng diễn tả của ngôn ngữ sẽ tăng lên bằng những phương cách mới nhằm thể hiện ý tưởng.
-Định lý này cũng được dùng để giải thích rằng bạn sẽ chẳng bao giờ hoàn toàn hiểu được chính bạn, bởi vì ý nghĩ của bạn, giống như bất kỳ một hệ thống khép kín nào khác, chỉ có thể biết về bản thân mình dựa trên những kiến thức của chính mình.(Khi chúng ta tự nhận định về bản thân mình thì hệ tư duy của chúng ta trở thành một hệ tự quy chiếu, PVH).
● John von Neuman, người có mộ chí cách mộ Gödel chỉ 10m, nói:
-Theo những trải nghiệm của những người hiện còn sống, (thế kỷ 20) đã có ít nhất 3 cuộc khủng khoảng nghiêm trọng … trong đó có 2 cuộc khủng hoảng về vật lý, được gọi là khủng hoảng về nhận thức, đó là việc khám phá ra thuyết tương đối và lý thuyết lượng tử … Cuộc khủng hoảng thứ ba xẩy ra trong toán học. Đó là một cuộc khủng hoảng nghiêm trọng về nhận thức, liên quan tới việc tìm kiếm những phương pháp đúng đắn và chặt chẽ để đưa ra một chứng minh toán học chính xác. Toán học trước đây vốn được coi là tuyệt đối chặt chẽ, vì thế cuộc khủng hoảng này là hết sức bất ngờ, và lại càng bất ngờ hơn vào những ngày về sau, khi mà những phép mầu tưởng rằng không thể nào xẩy ra. Tuy nhiên nó đã xẩy ra(14)(“Phép mầu” ấy chính là Định Lý Bất Toàn của Kurt Gödel, PVH).
● Bách khoa toàn thư Wikipedia cũng nhận định:
-Định Lý Bất Toàn của Gödel … có ý nghĩa vô cùng quan trọng đối với triết học toán học. Nó … đã chỉ ra rằng chương trình của Hilbert nhằm tìm kiếm một hệ tiên đề đầy đủ và phi mâu thuẫn cho toàn bộ toán học là BẤT KHẢ, và do đó nó đã cho một câu trả lời phủ định đối với bài toán số 2 của Hilbert(15).
● Trong cuốn “Gödel, A Life of Logic” (đã dẫn), John Casti & Werner DePauli nhấn mạnh những ý nghĩa cực kỳ quan trọng sau đây:
-Gödel đã khám phá ra rằng cho dù tồn tại những chân lý về mối quan hệ giữa các con số thuần tuý (ý nói các con số tách rời ý nghĩa vật chất thực tế, PVH), thì các phương pháp suy diễn logic thực ra vẫn quá yếu để chúng ta có thể chứng minh tất cả những chân lý đó. Nói cách khác, đơn giản là thế giới chân lý lớn hơn thế giới chứng minh.
-Việc công bố một chứng minh không thể phản bác được rằng tồn tại những mệnh đề toán học được coi là đúng nhưng không thể chứng minh được, như Gödel đã làm năm 1931, đã gây chấn động thế giới toán học như một vụ nổ không khí ở Bắc cực giữa mùa đông lạnh buốt.
-Kết luận chủ yếu của Wittgenstein, rằng “logic là cần chứ không đủ để mô tả bất kỳ một thực tế khách quan nào”, và rằng “ngôn ngữ không thể bắt kịp với tất cả những gì tồn tại trên thế giới”, đã được Gödel trình bầy dưới dạng toán học … Về căn bản, cái mà Godel chỉ ra là không có một dạng toán học nào có thể đủ thông minh để biểu hiện đầy đủ khái niệm chân lý thường ngày.
● Nhận định trên cũng được Hofstadter nhấn mạnh trong cuốn Gödel, Escher, Bach như sau:
-Gödel đã chỉ ra rằng thế giới chứng minh là một thế giới nhỏ hơn thế giới chân lý, bất kể hệ tiên đề của thế giới ấy ra sao.
Có nghĩa là toán học – lĩnh vực nhận thức mà ta tưởng là “ông vua của các khoa học” – thực ra cũng rất “yếu”: Bằng trực giác, con người có thể cảm nghiệm được những chân lý toán học mà chính toán học không thể chứng minh! Gödel đã mô tả điều này rõ hơn ai hết:
Thế giới chân lý có thể chứng minh được quá nhỏ so với thế giới chân lý có thể nhận thức được (bằng trực giác + mọi phương tiện nhận thức), nhưng thế giới chân lý nhận thức được lại quá nhỏ bé so với thế giới hiện thực.
Có nghĩa là thế giới hiện thực quá mênh mông so với thế giới có thể chứng minh được! Vì thế Gödel không thể cầm lòng mà thốt lên:
“My God, the mazes must be enormous!”(Ôi lạy Chúa, cái mê cung (Ngài tạo ra) mới khổng lồ làm sao!). Lời thán này làm ta nhớ đến lời thán của Pierre Simon de Laplace một thế kỷ trước: “Ce que nous savons est peu de choses, ce que nous ignorons est immense” (Cái ta biết thì quá ít ỏi, cái ta không biết thì mênh mông). Nhưng Laplace chỉ nói như một tâm sự triết lý, trong khi Gödel nói như một khẳng định khoa học! Đó không phải là chủ nghĩa “bất khả tri” (Agnosticism), mà là khoa học về giới hạn của nhận thức.
● Bách Khoa Toàn Thư Triết Học Stanford (Stanford Encyclopedia of Phylosophy) cho biết(16): -Năm 1986, Solomon Feferman (giáo sư Đại Học Stanford, Mỹ, một nhà toán học và triết học khoa học nổi tiếng) nhận định rằng Kurt Gödel chiếm một vị thế không ai có thể so sánh được: Đó là nhà logic quan trọng nhất trong thời đại chúng ta … Có lẽ trong số những thành tựu có ý nghĩa nhất về logic kể từ những thành tựu của Aristotle, Đinh Lý Bất Toàn của Gödel là một bước ngoặt trong toán học thế kỷ 20. Công trình của ông đụng tới mọi lĩnh vực của logic toán học, nếu không phải là nguồn kích thích căn bản trong hầu hết các trường hợp. Trong công trình triết học của mình, Gödel đã trình bầy và bảo vệ chủ nghĩa Platonism trong toán học, bao gồm quan điểm cho rằng toán học là một khoa học mô tả, và rằng nhận thức chân lý toán học là một đối tượng khách quan (thay vì chủ quan do con người tự nghĩ ra, PVH).
● Và sau đây là nhận định trên một số trang mạng khoa học(17):
-Gödel đã chỉ ra rằng có những bài toán không thể giải được bằng bất kỳ một tập hợp quy tắc hoặc quy trình nào; để giải những bài toán đó, người ta luôn luôn phải mở rộng hệ tiên đề. Điều này đã phủ nhận một niềm tin phổ biến vào thời đó rằng các ngành toán học khác nhau có thể tập hợp lại và đặt trên một nền tảng logic duy nhất.
-Sau này Alan Turingđã đưa ra một diễn giải những kết quả của Godel bằng cách đặt chúng trên một cơ sở thuật toán: Có những con số và hàm số không thể tính toán được bằng bất kỳ một chiếc máy logic nào.
-Gần đây hơn, Gregory Chaitin, một nhà toán học làm việc tại IBM, đã nhấn mạnh rằng những kết quả của Godel và Turing đã xác định những giới hạn cơ bản đối với toán học.
-Là một trong những nhà logic xuất sắc nhất của mọi thời đại, Gödel với công trình của ông đã gây ra một va chạm vô cùng lớn đối với tư duy khoa học và triết học thế kỷ XX, vào lúc mà rất nhiều người, như Bertrand Russell, Alfred Whitehead và David Hilbert đang cố sử dụng logic và lý thuyết tập hợp để hiểu được toàn bộ nền tảng của toán học .
-Định lý Gödel đã chấm dứt một nỗ lực kéo dài một trăm năm hòng thiết lập một hệ tiên đề cho toàn bộ toán học. Nỗ lực chủ yếu đã được thực hiện bởi Bertrand Russell trong cuốn Principia Mathematica(1910-1913). Một nỗ lực khác là chủ nghĩa hình thức của Hilbert, nhưng nỗ lực này đã bị giáng một đòn chí tử bởi những kết quả của Gödel.
-Định lý Gödel là một bước ngoặt trong toán học thế kỷ 20, chỉ ra rằng toán học không phải là một cái gì đó hoàn hảo như ta vẫn tưởng. Định lý này cũng được sử dụng để ngụ ý rằng không bao giờ có thể lập được một chương trình cho computer để trả lời mọi câu hỏi toán học.
Sưu tầm: Phước Thể.
Nguồn sưu tầm: http://vietsciences.free.fr/
» Tin mới nhất:
» Các tin khác: