Giới thiệu về xác suất thực nghiệm
Giới thiệu về xác suất thực nghiệm. Định nghĩa không gian xác suất.
Lý thuyết xác suất là ngành toán học chuyên nghiên cứu xác suất.
Các nhà toán học "thuần túy" thường xem lý thuyết xác suất là ngành nghiên cứu về các biến ngẫu nhiên và không gian xác suất — hướng này được đưa ra bởi Kolmogorov vào thập niên 1930. Một không gian xác suất là một bộ ba , trong đó:
-
là tập không rỗng, đôi khi gọi là "không gian mẫu", trong đó mỗi thành viên của nó được coi là một kết quả có thể xảy ra của một thực nghiệm ngẫu nhiên. Ví dụ, nếu chọn ngẫu nhiên 100 cử tri trong số các cử tri tại California và hỏi họ sẽ bầu cho ai vào chức vụ thống đốc, thì tập tất cả các dãy gồm 100 cử tri California sẽ là không gian mẫu .
-
là một σ-đại số của các tập con của , các thành viên của nó được gọi là các "biến cố". Ví dụ, tập tất cả các chuỗi gồm 100 cử tri California trong đó ít nhất 60 người sẽ bầu cho Schwarzenegger được xem là "biến cố" rằng ít nhất 60 trong số 100 người được chọn sẽ bầu cho Schwarzenegger. Nói rằng là một σ-đại số có nghĩa rằng, theo định nghĩa, nó chứa , rằng phần bù của một biến cố bất kì là một biến cố, và rằng hợp của một chuỗi (hữu hạn hay vô hạn đếm được) các biến cố bất kì là một biến cố.
-
là một độ đo (cụ thể là độ đo xác suất) trên , nghĩa là , đó là một σ-đại số và là đại số lớn nhất mà ta có thể tạo được bằng .
Các nhà toán học coi xác suất là các số trong khoảng , được gán tương ứng với một biến cố mà khả năng xảy ra hoặc không xảy ra là ngẫu nhiên. Ký hiệu xác suất được gán cho biến cố theo tiên đề xác suất.
Xác suất mà biến cố xảy ra khi biết việc xảy ra của biến cố là một xác suất có điều kiện của khi biết ; giá trị số của nó là (với điều kiện là khác 0). Nếu xác suất có điều kiện của khi biết là bằng với xác suất ("không có điều kiện")của , thì và được xem là các sự kiện độc lập. Vì quan hệ giữa và là đối xứng nên ta có thể nói rằng .
Hai khái niệm chủ đạo trong lý thuyết xác suất là biến ngẫu nhiên và phân bố xác suất của một biến ngẫu nhiên; xem thông tin cụ thể ở các bài tương ứng.