

16.3

Fundamental Theorem for Line Integrals

In this section, we will learn about:

The Fundamental Theorem for line integrals
and determining conservative vector fields.

Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$.

Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C.

Then,
$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

CONSERVATIVE VECTOR FIELDS Theorem 5 If

$$F(x, y) = P(x, y) i + Q(x, y) j$$

is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then, throughout *D*,

we have:
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

CONSERVATIVE VECTOR FIELDS Theorem 6

Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D.

Suppose that P and Q have continuous first-order derivatives and $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ throughout D.

■ Then, *F* is conservative.

CONSERVATIVE VECTOR FIELDS Example 2

Determine whether or not the vector field

$$F(x, y) = (x - y) i + (x - 2) j$$

is conservative.

■ Let P(x, y) = x - y and Q(x, y) = x - 2.

■ Then,
$$\frac{\partial P}{\partial y} = -1$$
 $\frac{\partial Q}{\partial x} = 1$

■ As $\partial P/\partial y \neq \partial Q/\partial x$, **F** is not conservative by Theorem 5.

FINDING POTENTIAL FUNCTION Example 4

a. If $\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 - 3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.

b. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by $\mathbf{r}(t) = e^{t} \sin t \, \mathbf{i} + e^{t} \cos t \, \mathbf{j}$ $0 \le t \le \pi$

FINDING POTENTIAL FUNCTION E. g. 4 a—Eqns. 7 & 8

From Example 3, we know that **F** is conservative.

So, there exists a function f with $\nabla f = \mathbf{F}$, that is,

$$f_{X}(x, y) = 3 + 2xy$$

$$f_{V}(x, y) = x^2 - 3y^2$$

Integrating Equation 7 with respect to x, we obtain:

$$f(x, y) = 3x + x^2y + g(y)$$

Notice that the constant of integration is a constant with respect to x, that is, a function of y, which we have called g(y). Next, we differentiate both sides of Equation 9 with respect to *y*:

$$f_y(x, y) = x^2 + g'(y)$$

FINDING POTENTIAL FUNCTION Example 4 a

Comparing Equations 8 and 10, we see that:

$$g'(y) = -3y^2$$

• Integrating with respect to y, we have:

$$g(y) = -y^3 + K$$

where K is a constant.

FINDING POTENTIAL FUNCTION Example 4 a

Putting this in Equation 9, we have

$$f(x, y) = 3x + x^2y - y^3 + K$$

as the desired potential function.

FINDING POTENTIAL FUNCTION Example 4 b

To use Theorem 2, all we have to know are the initial and terminal points of *C*, namely,

$$\mathbf{r}(0) = (0, 1)$$

$$\mathbf{r}(\pi) = (0, -e^{\pi})$$

In the expression for f(x, y) in part a, any value of the constant K will do.

• So, let's choose K = 0.

FINDING POTENTIAL FUNCTION Example 4 b

Then, we have:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f\left(0, -e^{\pi}\right) - f\left(0, 1\right)$$
$$= e^{3\pi} - (-1) = e^{3\pi} + 1$$

 This method is much shorter than the straightforward method for evaluating line integrals that we learned in Section 12.2