VECTOR CALCULUS 16

16.3 Fundamental Theorem for Line Integrals

In this section, we will learn about: The Fundamental Theorem for line integrals and determining conservative vector fields.

FT FOR LINE INTEGRALS Theorem 2

Let *C* be a smooth curve given by the vector function $r(t)$, $a \le t \le b$.

Let *f* be a differentiable function of two or three variables whose gradient vector ∇f is continuous on *C*.

Then, $(\mathbf{r}(b)) - f(\mathbf{r}(a))$ $\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$

CONSERVATIVE VECTOR FIELDS Theorem 5 If

$$
\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}
$$

is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then, throughout *D,* we have: *P Q y x* ∂P ∂g = ∂y ∂z

CONSERVATIVE VECTOR FIELDS Theorem 6 Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region *D*.

Suppose that *P* and *Q* have continuous first-order derivatives and throughout *D.* ∂P ∂Q ∂y ∂x $=$

Then, F is conservative.

CONSERVATIVE VECTOR FIELDS Example 2 Determine whether or not the vector field $F(x, y) = (x - y) i + (x - 2) j$

is conservative.

• Let $P(x, y) = x - y$ and $Q(x, y) = x - 2$.

Then,
$$
\frac{\partial P}{\partial y} = -1
$$
 $\frac{\partial Q}{\partial x} = 1$

 As ∂*P*/∂*y* ≠ ∂*Q*/∂*x*, **F** is not conservative by Theorem 5.

FINDING POTENTIAL FUNCTION a. If $F(x, y) = (3 + 2xy) i + (x^2 - 3y^2) j$, find a function *f* such that $\mathbf{F} = \nabla f$. **Example 4**

b. Evaluate the line integral $\int \mathbf{F} \cdot d\mathbf{r}$, where *C* is the curve given by $r(t) = e^t \sin t \mathbf{i} + e^t \cos t \mathbf{j}$ 0 ≤ $t \leq \pi$ $\int_C \mathbf{F} \cdot d\mathbf{r}$

FINDING POTENTIAL FUNCTION From Example 3, we know that **F** is conservative. **E. g. 4 a—Eqns. 7 & 8**

So, there exists a function f with $\nabla f = \mathbf{F}$, that is,

 $f_x(x, y) = 3 + 2xy$

 $f_y(x, y) = x^2 - 3y^2$

FINDING POTENTIAL FUNCTION Integrating Equation 7 with respect to *x*, we obtain: **E. g. 4 a—Eqn. 9**

$$
f(x, y) = 3x + x^2y + g(y)
$$

• Notice that the constant of integration is a constant with respect to *x*, that is, a function of *y*, which we have called *g*(*y*).

FINDING POTENTIAL FUNCTION Next, we differentiate both sides of Equation 9 with respect to *y*: **E. g 4 a—Eqn. 10**

 $f_y(x, y) = x^2 + g'(y)$

FINDING POTENTIAL FUNCTION Comparing Equations 8 and 10, we see that: **Example 4 a**

$$
g'(y)=-3y^2
$$

■ Integrating with respect to *y*, we have:

 $g(y) = -y^3 + K$

where *K* is a constant.

FINDING POTENTIAL FUNCTION Putting this in Equation 9, we have **Example 4 a**

$$
f(x, y) = 3x + x^2y - y^3 + K
$$

as the desired potential function.

FINDING POTENTIAL FUNCTION To use Theorem 2, all we have to know are the initial and terminal points of *C*, namely, **Example 4 b**

 $r(0) = (0, 1)$

 $$

FINDING POTENTIAL FUNCTION In the expression for *f*(*x*, *y*) in part a, any value of the constant *K* will do. **Example 4 b**

 \blacktriangleright So, let's choose $K = 0$.

FINDING POTENTIAL FUNCTION Example 4 b

Then, we have:
\n
$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(0, -e^{\pi}) - f(0, 1)
$$
\n
$$
= e^{3\pi} - (-1) = e^{3\pi} + 1
$$

This method is much shorter than the straightforward method for evaluating line integrals that we learned in Section 12.2