
MULTIPLE INTEGRALS



P212.1

MULTIPLE INTEGRALS

Recall that it is usually difficult to evaluate 

single integrals directly from the definition of an 

integral.

 However, the Fundamental Theorem of Calculus 

(FTC) provides a much easier method.



P312.1

INTRODUCTION

The evaluation of double integrals from first 

principles is even more difficult.

Once we have expressed a double integral as an 

iterated integral, we can then evaluate it by 

calculating two single integrals.
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INTRODUCTION

Suppose that f is a function of two variables that 

is integrable on the rectangle 

R = [a, b] × [c, d] 

We use the notation                      to mean:

 x is held fixed.

 f(x, y) is integrated with respect to y from y = c to y

= d.

( , )
d

c
f x y dy
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PARTIAL INTEGRATION

This procedure is called partial integration with 

respect to y. 

 Notice its similarity to partial differentiation.

Now,                      is a number that depends on 

the value of x.

So, it defines a function of x:

( , )
d

c
f x y dy

( ) ( , )
d

c
A x f x y dy 
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PARTIAL INTEGRATION

If we now integrate the function A with respect 

to x from x = a to x = b, we get:

( ) ( , )
b b d

a a c
A x dx f x y dy dx 
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ITERATED INTEGRAL

The integral on the right side of Equation 7 is 

called an iterated integral. 

 Usually, the brackets are omitted. 
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ITERATED INTEGRALS

Thus, 

means that:

 First, we integrate with respect to y from c to d.

 Then, we integrate with respect to x from a to b.

( , ) ( , )
b d b d

a c a c
f x y dy dx f x y dy dx 
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ITERATED INTEGRALS

Similarly, the iterated integral

means that:

 First, we integrate with respect to x (holding y fixed) 

from x = a to x = b.

 Then, we integrate the resulting function of y with 

respect to y from y = c to y = d.

Notice that, in both Equations 8 and 9, we work 

from the inside out.

( , ) ( , )
d b d b

c a c a
f x y dx dy f x y dx dy 
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Example 4

 Evaluate the iterated integrals.

(a)

(b)

3 2
2

0 1
x y dy dx 

2 3
2

1 0
x y dx dy 
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Example 4(a) SOLUTION

Regarding x as a constant, we obtain:

2
2

2
2 2

1
1

2 2
2 2

23
2

2

2 1

2 2

y

y

y
x y dy x

x x

x
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Example 4(a) SOLUTION

Thus, the function A in the preceding discussion 

is given by           

in this example.

23
2

( )A x x
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Example 4(a) SOLUTION

We now integrate this function of x from 0 to 3:

3 2 3 2
2 2

0 1 0 1

3
3

3
23

20
0

2

27

2

x y dy dx x y dy dx

x
x dx
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Example 4(b) SOLUTION

Here, we first integrate with respect to x:

2 3 2 3
2 2

1 0 1 0

3
3

2

1
0

2
2

2

1
1

3

27
9 9

2 2

x

x

x y dx dy x y dx dy

x
y dy

y
y dy
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ITERATED INTEGRALS

Notice that, in Example 4, we obtained the same 

answer whether we integrated with respect to y

or x first. 

In general, it turns out (see Theorem 10) that the 

two iterated integrals in Equations 8 and 9 are 

always equal.

 That is, the order of integration does not matter.

 This is similar to Clairaut’s Theorem on the equality 

of the mixed partial derivatives.
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ITERATED INTEGRALS

The following theorem gives a practical method 

for evaluating a double integral by expressing it 

as an iterated integral (in either order).
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If f is continuous on the rectangle

R = {(x, y) |a ≤ x ≤ b, c ≤ y ≤ d

then

More generally, this is true if we assume that f is 

bounded on R, f is discontinuous only on a finite 

number of smooth curves, and the iterated 

integrals exist.

FUBUNI’S THEOREM

( , ) ( , )

( , )

b d

a c
R

d b

c a

f x y dA f x y dy dx

f x y dx dy
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FUBUNI’S THEOREM

Theorem 10 is named after the Italian 

mathematician Guido Fubini (1879–1943), who 

proved a very general version of this theorem in 

1907.

 However, the version for continuous functions was 

known to the French mathematician Augustin-Louis 

Cauchy almost a century earlier.
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FUBUNI’S THEOREM

The proof of Fubini’s Theorem is too difficult 

to include in this book.

However, we can at least give an intuitive 

indication of why it is true for the case where 

f(x, y) ≥ 0.
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FUBUNI’S THEOREM

Recall that, if f is positive, then we can interpret 

the double integral                        

as: 

 The volume V of the solid S that lies above R and 

under the surface z = f(x, y).

( , )
R

f x y dA
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FUBUNI’S THEOREM

However, we have another formula that we used 

for volume in Chapter 7, namely,

where:

 A(x) is the area of a cross-section of S in the plane 

through x perpendicular to the x-axis.

( )
b

a
V A x dx 
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FUBUNI’S THEOREM

From Figure 11, you can see that A(x) is the 

area under the curve C whose equation is 

z = f(x, y) 

where:

 x is held constant

 c ≤ y ≤ d
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FUBUNI’S THEOREM

Therefore,

Then, we have:

( ) ( , )
d

c
A x f x y dy 

( , ) ( )

( , )

b

a
R

b d

a c

f x y dA V A x dx

f x y dy dx

 



 

 



P2412.1

FUBUNI’S THEOREM

A similar argument, using cross-sections 

perpendicular to the y-axis as in Figure 12, 

shows that:

( , )

( , )

R

d b

c a

f x y dA

f x y dx dy
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Example 5

Evaluate the double integral 

where 

R = {(x, y)| 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}

 Compare with Example 3.

2( 3 )
R

x y dA



P2612.1

Example 5 SOLUTION 1

Fubini’s Theorem gives:

2 2
2 2

0 1

22
3

0 1

2
2

2

0
0

( 3 ) ( 3 )

( 7) 7
2

12

R

y

y

x y dA x y dy dx

xy y dx

x
x dx x
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Example 5 SOLUTION 2

This time, we first integrate with respect to x:
2 2

2 2

1 0

2
2

2
2

1
0

2
2

2 3

1
1

( 3 ) ( 3 )

3
2

(2 6 ) 2 2

12

R

x

x

x y dA x y dx dy

x
xy dy

y dy y y
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FUBUNI’S THEOREM

Notice the negative answer in Example 2.

Nothing is wrong with that.

 The function f in the example is not a positive 

function.

 So, its integral doesn’t represent a volume.
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FUBUNI’S THEOREM

From Figure 13, we see that f is always negative 

on R.

 Thus, the value of the integral is the negative of the 

volume that lies above the graph of f and below R.
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Example 6

Evaluate                         

where 

R = [1, 2] × [0, p]

sin( )
R

y xy dA
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Example 6 SOLUTION

If we first integrate with respect to x, we get:



2

0 1

2

1
0

0

1
2 0

sin( ) sin( )

[ cos( )]

( cos 2 cos )

sin 2 sin 0

R

x

x

y xy dA y xy dx dy

xy dy

y y dy

y y

p

p

p

p
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NOTE

If we first integrate with respect to y in Example 

6, we get
2

1 0
sin( ) sin( )

R

y xy dA y xy dy dx
p
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NOTE

However this order of integration is much more 

difficult than the method given in the example 

because it involves integration by parts twice. 

Therefore, when we evaluate double integrals it 

is wise to choose the order of integration that 

gives simpler integrals.



P3412.1

Example 7

Find the volume of the solid S that is bounded 

by:

 The elliptic paraboloid x2 + 2y2 + z = 16

 The planes x = 2 and y = 2

 The three coordinate planes



P3512.1

Example 7 SOLUTION

We first observe that S is the solid that lies:

 Under the surface z = 16 – x2 – 2y2

 Above the square R = [0, 2] × [0, 2]

 See Figure 15
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Example 7 SOLUTION

This solid was considered in Example 1.

Now, however, we are in a position to evaluate 

the double integral using Fubini’s Theorem.
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Example 7 SOLUTION

Thus,

 

2 2

2 2
2 2

0 0

22
3 21

30 0

2
288

30

2
388 4

3 3 0

(16 2 )

(16 2 )

16 2

4

48

R

x

x

V x y dA

x y dx d y

x x y x dy

y dy

y y
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ITERATED INTEGRALS

Consider the special case where f(x, y) can be 

factored as the product of a function of x only 

and a function of y only.

 Then, the double integral of f can be written in a 

particularly simple form.
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ITERATED INTEGRALS

To be specific, suppose that:

 f(x, y) = g(x)h(y)

 R = [a, b] × [c, d]

Then, Fubini’s Theorem gives:

( , ) ( ) ( )

( ) ( )

d b

c a
R

d b

c a

f x y dA g x h y dx dy

g x h y dx dy
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ITERATED INTEGRALS

In the inner integral, y is a constant.

So, h(y) is a constant and we can write: 

since                 is a constant.

 ( ) ( ) ( ) ( )

( ) ( )

d b d b

c a c a

b d

a c

g x h y dx dy h y g x dx dy

g x dx h y dy

   
      



   

 
( )

b

a
g x dx
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ITERATED INTEGRALS

Hence, in this case, the double integral of f can 

be written as the product of two single integrals:

where R = [a, b] × [c, d].

( ) ( ) ( ) ( )
b d

a c
R

g x h y dA g x dx h y dy  
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Example 8

If R = [0, p/2] × [0, p/2], then, by Equation 5,

   

/ 2 / 2

0 0

/ 2 / 2

0 0

sin cos sin cos

cos sin

1 1 1

R

x y dA x dx y dy

x y

p p

p p
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ITERATED INTEGRALS

The function f(x, y) = sin x cos y in Example 8 is 

positive on R.

So, the integral represents the volume of the 

solid that lies above R and below the graph of f

shown in Figure 16.
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PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals 

that can be proved in the same man-ner as in 

Section 4.2. 
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PROPERTIES OF DOUBLE INTEGRALS

We assume that all of the integrals exist. 

Properties 12 and 13are referred to as the 

linearity of the integral.

[ ( , ) ( , )] ( , ) ( , )
R R R

f x y g x y dA f x y dA g x y dA    

( , ) ( ,    where  is a constant)
R R

cf x y dA c f x y A cd 
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PROPERTIES OF DOUBLE INTEGRALS

If f(x, y) ≥ g(x, y) for all (x, y) in R, then

( , ) ( , )
R R

f x y dA g x y dA 


