
MULTIPLE INTEGRALS



P212.1

MULTIPLE INTEGRALS

Recall that it is usually difficult to evaluate 

single integrals directly from the definition of an 

integral.

 However, the Fundamental Theorem of Calculus 

(FTC) provides a much easier method.
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INTRODUCTION

The evaluation of double integrals from first 

principles is even more difficult.

Once we have expressed a double integral as an 

iterated integral, we can then evaluate it by 

calculating two single integrals.
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INTRODUCTION

Suppose that f is a function of two variables that 

is integrable on the rectangle 

R = [a, b] × [c, d] 

We use the notation                      to mean:

 x is held fixed.

 f(x, y) is integrated with respect to y from y = c to y

= d.

( , )
d

c
f x y dy
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PARTIAL INTEGRATION

This procedure is called partial integration with 

respect to y. 

 Notice its similarity to partial differentiation.

Now,                      is a number that depends on 

the value of x.

So, it defines a function of x:

( , )
d

c
f x y dy

( ) ( , )
d

c
A x f x y dy 
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PARTIAL INTEGRATION

If we now integrate the function A with respect 

to x from x = a to x = b, we get:

( ) ( , )
b b d

a a c
A x dx f x y dy dx 

    
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ITERATED INTEGRAL

The integral on the right side of Equation 7 is 

called an iterated integral. 

 Usually, the brackets are omitted. 
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ITERATED INTEGRALS

Thus, 

means that:

 First, we integrate with respect to y from c to d.

 Then, we integrate with respect to x from a to b.

( , ) ( , )
b d b d

a c a c
f x y dy dx f x y dy dx 

     
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ITERATED INTEGRALS

Similarly, the iterated integral

means that:

 First, we integrate with respect to x (holding y fixed) 

from x = a to x = b.

 Then, we integrate the resulting function of y with 

respect to y from y = c to y = d.

Notice that, in both Equations 8 and 9, we work 

from the inside out.

( , ) ( , )
d b d b

c a c a
f x y dx dy f x y dx dy 

     
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Example 4

 Evaluate the iterated integrals.

(a)

(b)

3 2
2

0 1
x y dy dx 

2 3
2

1 0
x y dx dy 
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Example 4(a) SOLUTION

Regarding x as a constant, we obtain:

2
2

2
2 2

1
1

2 2
2 2

23
2

2

2 1

2 2

y

y

y
x y dy x

x x

x





 
  
 

   
    

   




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Example 4(a) SOLUTION

Thus, the function A in the preceding discussion 

is given by           

in this example.

23
2

( )A x x
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Example 4(a) SOLUTION

We now integrate this function of x from 0 to 3:

3 2 3 2
2 2

0 1 0 1

3
3

3
23

20
0

2

27

2

x y dy dx x y dy dx

x
x dx

 
  


  





   


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Example 4(b) SOLUTION

Here, we first integrate with respect to x:

2 3 2 3
2 2

1 0 1 0

3
3

2

1
0

2
2

2

1
1

3

27
9 9

2 2

x

x

x y dx dy x y dx dy

x
y dy

y
y dy





 
  

 
  

 


  



   




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ITERATED INTEGRALS

Notice that, in Example 4, we obtained the same 

answer whether we integrated with respect to y

or x first. 

In general, it turns out (see Theorem 10) that the 

two iterated integrals in Equations 8 and 9 are 

always equal.

 That is, the order of integration does not matter.

 This is similar to Clairaut’s Theorem on the equality 

of the mixed partial derivatives.
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ITERATED INTEGRALS

The following theorem gives a practical method 

for evaluating a double integral by expressing it 

as an iterated integral (in either order).
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If f is continuous on the rectangle

R = {(x, y) |a ≤ x ≤ b, c ≤ y ≤ d

then

More generally, this is true if we assume that f is 

bounded on R, f is discontinuous only on a finite 

number of smooth curves, and the iterated 

integrals exist.

FUBUNI’S THEOREM

( , ) ( , )

( , )

b d

a c
R

d b

c a

f x y dA f x y dy dx

f x y dx dy





  

 
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FUBUNI’S THEOREM

Theorem 10 is named after the Italian 

mathematician Guido Fubini (1879–1943), who 

proved a very general version of this theorem in 

1907.

 However, the version for continuous functions was 

known to the French mathematician Augustin-Louis 

Cauchy almost a century earlier.
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FUBUNI’S THEOREM

The proof of Fubini’s Theorem is too difficult 

to include in this book.

However, we can at least give an intuitive 

indication of why it is true for the case where 

f(x, y) ≥ 0.
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FUBUNI’S THEOREM

Recall that, if f is positive, then we can interpret 

the double integral                        

as: 

 The volume V of the solid S that lies above R and 

under the surface z = f(x, y).

( , )
R

f x y dA
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FUBUNI’S THEOREM

However, we have another formula that we used 

for volume in Chapter 7, namely,

where:

 A(x) is the area of a cross-section of S in the plane 

through x perpendicular to the x-axis.

( )
b

a
V A x dx 
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FUBUNI’S THEOREM

From Figure 11, you can see that A(x) is the 

area under the curve C whose equation is 

z = f(x, y) 

where:

 x is held constant

 c ≤ y ≤ d
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FUBUNI’S THEOREM

Therefore,

Then, we have:

( ) ( , )
d

c
A x f x y dy 

( , ) ( )

( , )

b

a
R

b d

a c

f x y dA V A x dx

f x y dy dx

 



 

 
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FUBUNI’S THEOREM

A similar argument, using cross-sections 

perpendicular to the y-axis as in Figure 12, 

shows that:

( , )

( , )

R

d b

c a

f x y dA

f x y dx dy



 
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Example 5

Evaluate the double integral 

where 

R = {(x, y)| 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}

 Compare with Example 3.

2( 3 )
R

x y dA
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Example 5 SOLUTION 1

Fubini’s Theorem gives:

2 2
2 2

0 1

22
3

0 1

2
2

2

0
0

( 3 ) ( 3 )

( 7) 7
2

12

R

y

y

x y dA x y dy dx

xy y dx

x
x dx x





  

   


    



 

  




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Example 5 SOLUTION 2

This time, we first integrate with respect to x:
2 2

2 2

1 0

2
2

2
2

1
0

2
2

2 3

1
1

( 3 ) ( 3 )

3
2

(2 6 ) 2 2

12

R

x

x

x y dA x y dx dy

x
xy dy

y dy y y





  

 
  

 

   


 

  




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FUBUNI’S THEOREM

Notice the negative answer in Example 2.

Nothing is wrong with that.

 The function f in the example is not a positive 

function.

 So, its integral doesn’t represent a volume.
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FUBUNI’S THEOREM

From Figure 13, we see that f is always negative 

on R.

 Thus, the value of the integral is the negative of the 

volume that lies above the graph of f and below R.
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Example 6

Evaluate                         

where 

R = [1, 2] × [0, p]

sin( )
R

y xy dA
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Example 6 SOLUTION

If we first integrate with respect to x, we get:



2

0 1

2

1
0

0

1
2 0

sin( ) sin( )

[ cos( )]

( cos 2 cos )

sin 2 sin 0

R

x

x

y xy dA y xy dx dy

xy dy

y y dy

y y

p

p

p

p







 

  

   

  




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NOTE

If we first integrate with respect to y in Example 

6, we get
2

1 0
sin( ) sin( )

R

y xy dA y xy dy dx
p

  
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NOTE

However this order of integration is much more 

difficult than the method given in the example 

because it involves integration by parts twice. 

Therefore, when we evaluate double integrals it 

is wise to choose the order of integration that 

gives simpler integrals.
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Example 7

Find the volume of the solid S that is bounded 

by:

 The elliptic paraboloid x2 + 2y2 + z = 16

 The planes x = 2 and y = 2

 The three coordinate planes
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Example 7 SOLUTION

We first observe that S is the solid that lies:

 Under the surface z = 16 – x2 – 2y2

 Above the square R = [0, 2] × [0, 2]

 See Figure 15
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Example 7 SOLUTION

This solid was considered in Example 1.

Now, however, we are in a position to evaluate 

the double integral using Fubini’s Theorem.
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Example 7 SOLUTION

Thus,

 

2 2

2 2
2 2

0 0

22
3 21

30 0

2
288

30

2
388 4

3 3 0

(16 2 )

(16 2 )

16 2

4

48

R

x

x

V x y dA

x y dx d y

x x y x dy

y dy

y y





  

  

    

 

    



 




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ITERATED INTEGRALS

Consider the special case where f(x, y) can be 

factored as the product of a function of x only 

and a function of y only.

 Then, the double integral of f can be written in a 

particularly simple form.
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ITERATED INTEGRALS

To be specific, suppose that:

 f(x, y) = g(x)h(y)

 R = [a, b] × [c, d]

Then, Fubini’s Theorem gives:

( , ) ( ) ( )

( ) ( )

d b

c a
R

d b

c a

f x y dA g x h y dx dy

g x h y dx dy



 
  

  

 
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ITERATED INTEGRALS

In the inner integral, y is a constant.

So, h(y) is a constant and we can write: 

since                 is a constant.

 ( ) ( ) ( ) ( )

( ) ( )

d b d b

c a c a

b d

a c

g x h y dx dy h y g x dx dy

g x dx h y dy

   
      



   

 
( )

b

a
g x dx
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ITERATED INTEGRALS

Hence, in this case, the double integral of f can 

be written as the product of two single integrals:

where R = [a, b] × [c, d].

( ) ( ) ( ) ( )
b d

a c
R

g x h y dA g x dx h y dy  
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Example 8

If R = [0, p/2] × [0, p/2], then, by Equation 5,

   

/ 2 / 2

0 0

/ 2 / 2

0 0

sin cos sin cos

cos sin

1 1 1

R

x y dA x dx y dy

x y

p p

p p



 

  

  
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ITERATED INTEGRALS

The function f(x, y) = sin x cos y in Example 8 is 

positive on R.

So, the integral represents the volume of the 

solid that lies above R and below the graph of f

shown in Figure 16.
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PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals 

that can be proved in the same man-ner as in 

Section 4.2. 
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PROPERTIES OF DOUBLE INTEGRALS

We assume that all of the integrals exist. 

Properties 12 and 13are referred to as the 

linearity of the integral.

[ ( , ) ( , )] ( , ) ( , )
R R R

f x y g x y dA f x y dA g x y dA    

( , ) ( ,    where  is a constant)
R R

cf x y dA c f x y A cd 
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PROPERTIES OF DOUBLE INTEGRALS

If f(x, y) ≥ g(x, y) for all (x, y) in R, then

( , ) ( , )
R R

f x y dA g x y dA 


