CHAPTER 3 APPLICATIONS OF DIFFERENTIATION

SECTION 3.5

OPTIMIZATION PROBLEMS

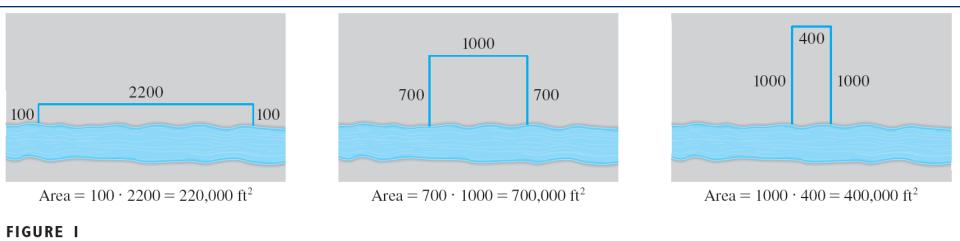
Example 1

- A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river.
 - What are the dimensions of the field that has the largest area?

SOLUTION

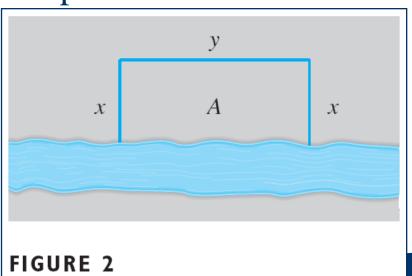
• In order to get a feeling for what is happening in the problem, let's experiment with some special cases.

Figure 1 shows three possible ways of laying out the 2400 ft of fencing.



- We see that when we try shallow, wide fields or deep, narrow fields, we get relatively small areas.
 - It seems plausible that there is some intermediate configuration that produces the largest area.

- Figure 2 illustrates the general case.
 We wish to maximize the area A of the rectangle.
 - Let *x* and *y* be the depth and width of the rectangle (in feet).
 - Then, we express A in terms of x and y: A = xy



- We want to express A as a function of just one variable.
 - So, we eliminate *y* by expressing it in terms of *x*.
 - To do this, we use the given information that the total length of the fencing is 2400 ft.
 - Thus, 2x + y = 2400

From that equation, we have:
$$y = 2400 - 2x$$

★This gives: $A = x(2400 - 2x) = 2400x - 2x^{2}$ Note that x ≥ 0 and x ≤ 1200 (otherwise A < 0).</p>

- So, the function that we wish to maximize is: $A(x) = 2400x - 2x^2$ $0 \le x \le 1200$
 - The derivative is: A'(x) = 2400 4x
 - So, to find the critical numbers, we solve: 2400 4x = 0
 - This gives: x = 600

- The maximum value of A must occur either at that critical number or at an endpoint of the interval.
 - A(0) = 0; A(600) = 720,000; and A(1200) = 0
 - So, the Closed Interval Method gives the maximum value as:

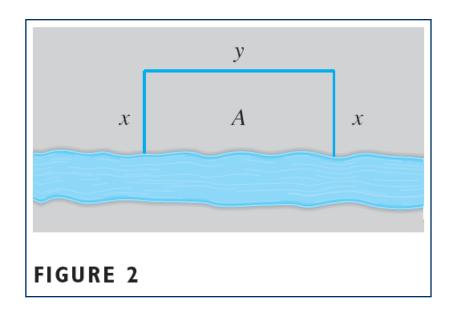
A(600) = 720,000

Alternatively, we could have observed that A''(x) = -4 < 0 for all x

So, *A* is always concave downward and the local maximum at x = 600 must be an absolute maximum.

Thus, the rectangular field should be:

- 600 ft deep
- 1200 ft wide

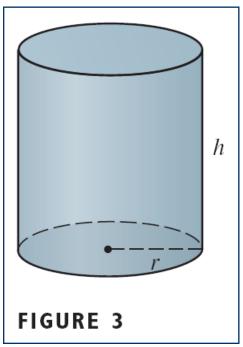


A cylindrical can is to be made to hold 1 L of oil.

 Find the dimensions that will minimize the cost of the metal to manufacture the can.

SOLUTION

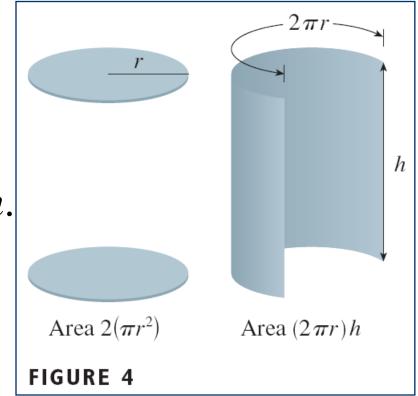
 Draw the diagram as in Figure 3, where *r* is the radius and *h* the height (both in centimeters).



To minimize the cost of the metal, we minimize the total surface area of the cylinder (top, bottom, and sides.)

From Figure 4 that we see that the sides are made from a rectangular sheet with dimensions $2\pi r$ and *h*.

So, the surface area is: $A = 2\pi r^2 + 2\pi rh$



To eliminate h, we use the fact that the volume is given as 1 L, which we take to be 1000 cm³.

• Thus, $\pi r^2 h = 1000$

• This gives $h = 1000/(\pi r^2)$

Substituting this in the expression for A gives: $A = 2\pi r^{2} + 2\pi r \left(\frac{1000}{\pi r^{2}}\right) = 2\pi r^{2} + \frac{2000}{r}$ So, the function that we want to minimize is: $A(r) = 2\pi r^{2} + \frac{2000}{r} \qquad r > 0$ To find the critical numbers, we differentiate:

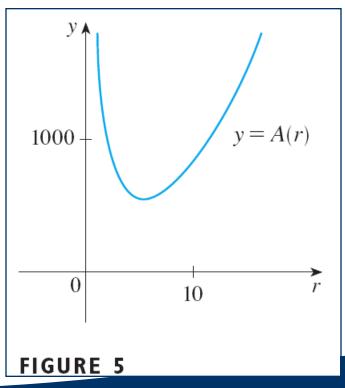
$$A'(r) = 4\pi r - \frac{2000}{r^2} = \frac{4(\pi r^3 - 500)}{r^2}$$

• Then, A'(r) = 0 when $\pi r = 500$

• So, the only critical number is: $r = \sqrt[3]{500/\pi}$

- As the domain of A is $(0, \infty)$, we can't use the argument of Example 1 concerning endpoints.
 - However, we can observe that A'(r) < 0 for $r < \sqrt[3]{500/\pi}$ and A'(r) > 0 for $r > \sqrt[3]{500/\pi}$
 - So, A is decreasing for all r to the left of the critical number and increasing for all r to the right.
 - Thus, $r = \sqrt[3]{500/\pi}$ must give rise to an absolute minimum.

- Alternatively, we could argue that $A(r) \to \infty$ as $r \to 0^+$ and $A(r) \to \infty$ as $r \to \infty$.
 - So, there must be a minimum value of A(r), which must occur at the critical number.
 - See Figure 5.



The value of h corresponding to is:

$$r = \sqrt[3]{500/\pi}$$
$$h = \frac{1000}{\pi r^2} = \frac{1000}{\pi (500/\pi)^{2/3}} = 2\sqrt[3]{\frac{500}{\pi}} = 2r$$