Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

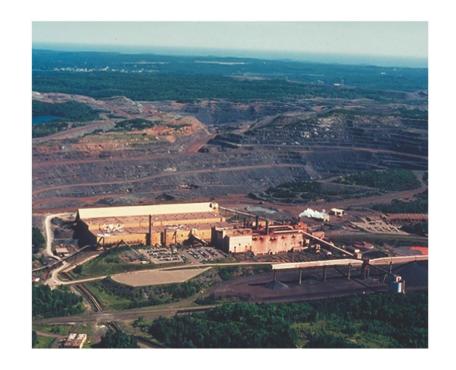
Chapter 23 Metals and Metallurgy

John D. Bookstaver
St. Charles Community College
St. Peters, MO
© 2006, Prentice Hall, Inc.

Minerals

- Most metals are found in solid inorganic compounds known as minerals.
- Minerals are named by common, not chemical, names.

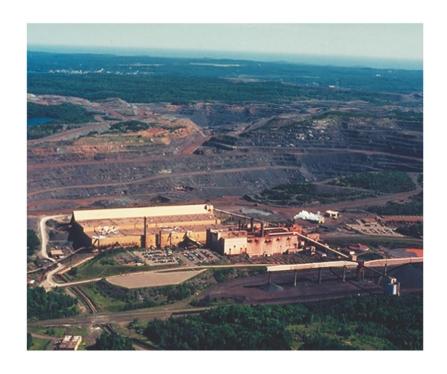
Minerals


Most important metals are found in minerals as oxides, sulfides, or carbonates.

Metal	Mineral	Composition
Aluminum	Corundum	Al_2O_3
Chromium	Chromite	FeCr ₂ O ₄
Copper	Chalcocite	Cu ₂ S
	Chalcopyrite	CuFeS ₂
	Malachite	$Cu_2CO_3(OH)_2$
Iron	Hematite	Fe_2O_3
	Magnetite	Fe_3O_4
Lead	Galena	PbS
Manganese	Pyrolusite	MnO_2
Mercury	Cinnabar	HgS
Molybdenum	Molybdenite	MoS_2
Tin	Cassiterite	SnO_2
Titanium	Rutile	TiO_2
	Ilmenite	FeTiO ₃
Zinc	Sphalerite	ZnS

Metallurgy

The science and technology of extracting metals from their natural sources and preparing them for practical use.



Metallurgy

It involves

- Mining.
- Concentrating ores.
- Reducing ores to obtain free metals.
- Purifying metals.
- Mixing metals to form alloys that have the properties desired.

Pyrometallurgy

The use of high temperature to alter or reduce minerals.

Calcination

Heating an ore to bring about its decomposition and elimination of a volatile product.

$$PbCO_3(s) \xrightarrow{\Delta} PbO(s) + CO_2(g)$$

Roasting

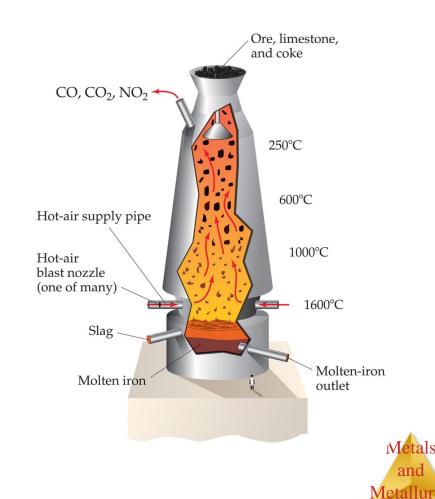
A thermal reaction between ore and the furnace atmosphere (often oxygen).

$$2 \text{ MoS}_2(s) + 7 \text{ O}_2(g) \longrightarrow 2 \text{ MoO}_3(s) + 4 \text{ SO}_2(g)$$

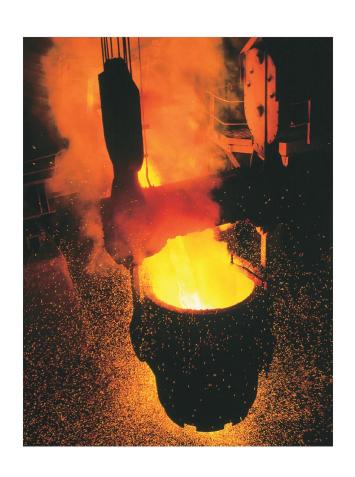
$$HgS(s) + O_2(g) \longrightarrow Hg(g) + SO_2(g)$$

Smelting

A melting process in which materials formed during reactions separate into two or more layers.


Refining

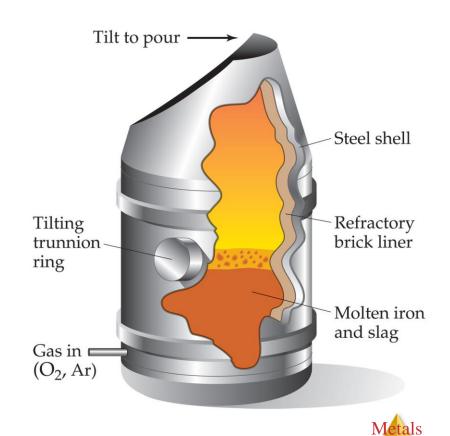
The treatment of a crude, relatively impure metal to improve its purity and better define its composition.



Reduction of Iron

- Hematite (Fe₂O₃), magnetite (Fe₃O₄), and other iron oxides are reduced in blast furnaces.
- Purified iron exits the furnace at the bottom.

Steel



- Crude molten iron contains many impurities:
 - > Silicon
 - Manganese
 - Phosphorus
 - > Sulfur
 - > Carbon

Steel

- The impurities are oxidized by O₂
 (except phosphorus, which reacts with CaO) to compounds easily separated from the molten iron.
- Purified molten steel is poured into molds.

and Metallur

Hydrometallurgy

These are techniques in which metal is extracted from ore via the use of aqueous reactions.

Leaching

- Process in which metal-containing compound is selectively dissolved.
- Can use water if metal-containing compound is water soluble, but more often must use acid, base, or a salt solution.

4 Au(s) + 8 CN⁻(aq) + O₂(g) + 2 H₂O(I)
$$\longrightarrow$$

4 Au(CN)₂⁻(aq) + 4 OH⁻(aq)

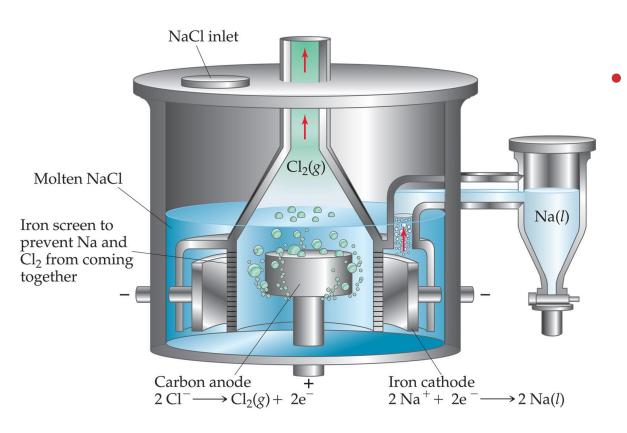
$$2 \operatorname{Au}(\operatorname{CN})_2^-(aq) + \operatorname{Zn}(s) \longrightarrow \operatorname{Zn}(\operatorname{CN})_4^{2-}(aq) + 2 \operatorname{Au}(s)$$

Bayer Process

Method of purifying bauxite (aluminum ore).

$$Al_2O_3 \cdot H_2O(s) + 2 H_2O(l) + 2 OH^-(aq) \longrightarrow 2 Al(OH)_4^-(aq)$$

 The soluble aluminate ion is separated from the insoluble impurities (SiO₂ and Fe₃O₃) by filtration.

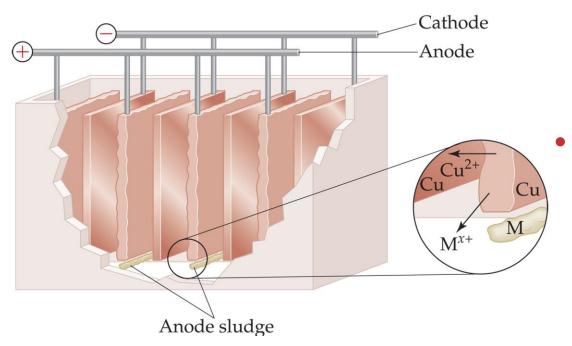


Electrometallurgy

The reduction of metal ores or refining of metals by use of electricity.

Sodium

- NaCl is electrolyzed in a Downs cell.
 - Gaseous Cl₂ allowed to disperse
 - Molten Na siphoned off



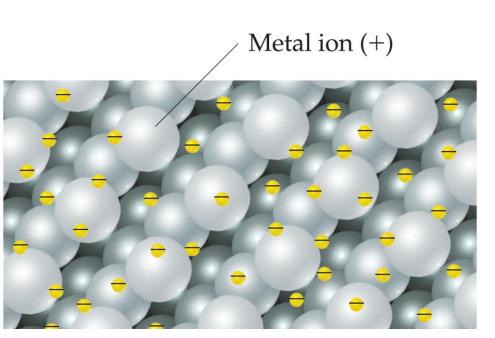
Aluminum

In the Hall process, Al₂O₃ is dissolved in molten cryolite Graphite. anodes (Na_2AIF_6), and AI^{3+} is reduced to molten AI. 0 Al₂O₃ dissolved in molten cryolite Molten aluminum Carbon-lined iron

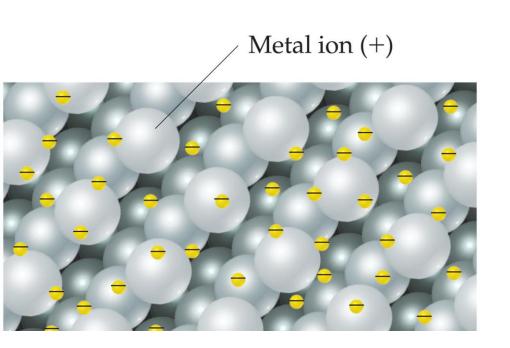
Copper

- Active metal impurities oxidized at anode, but don't plate out at cathode.
 - Cu²⁺ more easily reduced
 - Less active metals deposit as sludge below anode.

and Metallur


Physical Properties of Metals

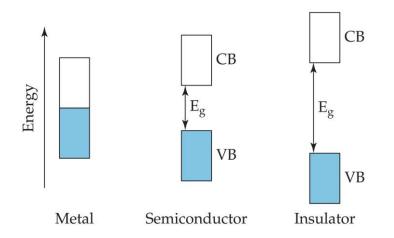
- Conduct heat and electricity.
- Malleable (can be pressed or hammered into sheets).
- Ductile (can be drawn into wire).
- Atoms can slip past each other.
 - So metals aren't as brittle as other solids.


Electron-Sea Model

- Metals can be thought of as cations suspended in "sea" of valence electrons.
- Attractions hold electrons near cations, but not so tightly as to impede their flow.

Electron-Sea Model

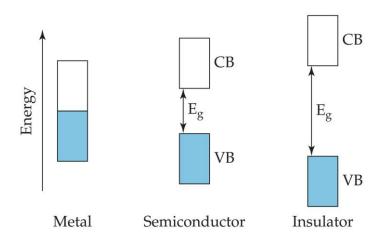
- This explains properties of metals—
 - Conductivity of heat and electricity
 - Deformation


Molecular Orbital Model

- Electron-sea model does not explain observed trends in melting point, boiling point, heat of fusion, etc.
 - Suggests these properties should increase with increasing number of valence electrons.

	Group 3B	Group 6B	Group 8B
Metal	Sc	Cr	Ni
Melting point (°C)	1541	1857	1455
Metal	Y	Mo	Pd
Melting point (°C)	1522	2617	1554
Metal	La	W	Pt
Melting point (°C)	918	3410	1772

Molecular Orbital Model



These trends can be explained by energy bands created by large number of molecular orbitals formed as metal atoms bond with each other.

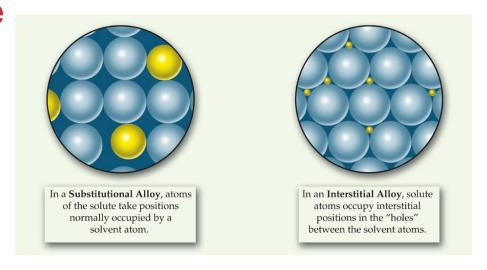
	Group 3B	Group 6B	Group 8B
Metal	Sc	Cr	Ni
Melting point (°C)	1541	1857	1455
Metal	Y	Mo	Pd
Melting point (°C)	1522	2617	1554
Metal	La	W	Pt
Melting point (°C)	918	3410	1772

Molecular Orbital Model

	Group 3B	Group 6B	Group 8B
Metal	Sc	Cr	Ni
Melting point (°C)	1541	1857	1455
Metal	Y 1500	Mo	Pd
Melting point (°C) Metal	1522 La	2617 W	1554 Pt
Melting point (°C)	918	3410	1772

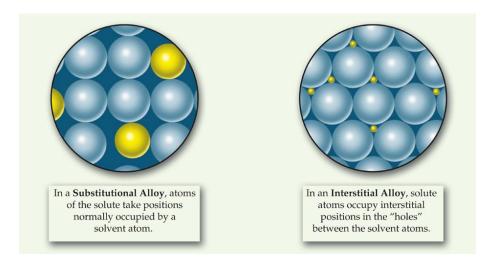
- As with nonmetals, bond order apexes in center of row, then decreases.
- Thus, attractions (and melting point, etc.) apex in center of transition metals. (Group 6B)

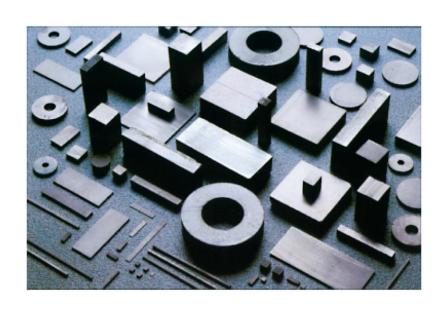
Alloys


Primary Element	Name of Alloy	Composition by Mass	Properties	Uses
Bismuth	Wood's metal	50% Bi, 25% Pb, 12.5% Sn, 12.5% Cd	Low melting point (70°C)	Fuse plugs, automatic sprinklers
Copper	Yellow brass	67% Cu, 33% Zn	Ductile, takes polish	Hardware items
Iron	Stainless steel	80.6% Fe, 0.4% C, 18% Cr, 1% Ni	Resists corrosion	Tableware
Lead	Plumber's solder	67% Pb, 33% Sn	Low melting point (275°C)	Soldering joints
Silver	Sterling silver Dental amalgam	92.5% Ag, 7.5% Cu 70% Ag, 18% Sn, 10% Cu, 2% Hg	Bright surface Easily worked	Tableware Dental fillings

- Mixtures of elements that have properties characteristic of metals.
- Many ordinary uses of metals involve alloys.

Solution Alloys


- Components of alloys are dispersed uniformly—
 - ➤ In substitutional alloys, solute particles take place of solvent metal atoms.
 - Particles close in size.


Solution Alloys

- Components of alloys are dispersed uniformly.
 - ➤ In interstitial alloys, solute particles find their way into holes between solvent metal atoms.
 - Solute particles smaller than solvent.

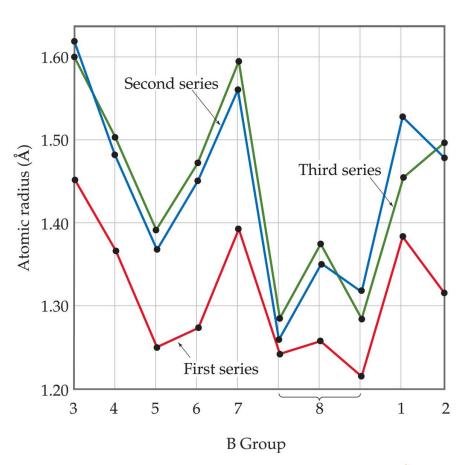
Intermetallic Compounds

- Homogeneous alloys with definite properties and compositions.
- Co₅Sm
 - Used for permanent magnets in headsets and speakers.

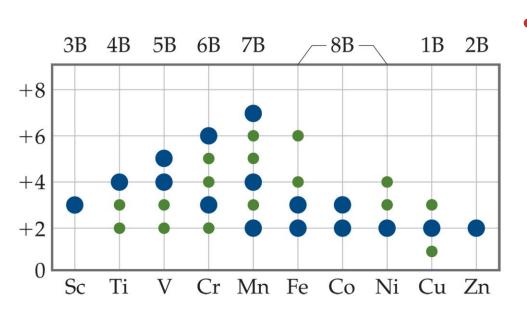
Transition Metals

- Many important metals are included in this group.
- Comprised of elements in d block of periodic table.

	3B	4B	5B	6B	7B		8B		1B	2B			
	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn			
	39 Y	40 Z r	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd			
	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg			


Physical Properties of Transition Metals

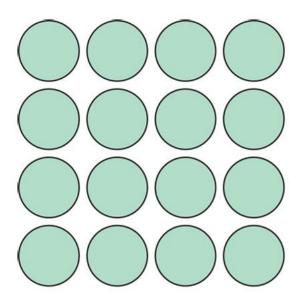
Group: Element:	3B 6 c	4B Ti	5B V	6B Cr	7B Mn	Fe	8B Co	Ni	1B Cu	2B Zn
Electron configuration	$3d^14s^2$	$3d^24s^2$	$3d^{3}4s^{2}$	$3d^54s^1$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^74s^2$	$3d^84s^2$	$3d^{10}4s^1$	$3d^{10}4s^2$
First ionization energy (kJ/mol)	631	658	650	653	717	759	758	737	745	906
Bonding atomic radius (Å)	1.44	1.36	1.25	1.27	1.39	1.25	1.26	1.21	1.38	1.31
Density (g/cm ³)	3.0	4.5	6.1	7.9	7.2	7.9	8.7	8.9	8.9	7.1
Melting point (°C)	1541	1660	1917	1857	1244	1537	1494	1455	1084	420

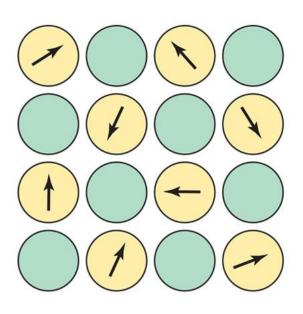

- Some of their properties (such as ionization energy, atomic radius, etc.) are suggestive of isolated atoms.
- Others (such as density, melting point, etc.) suggest bulk solid metal.

Atomic Radii

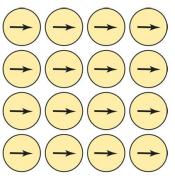
- Trends are similar across all three rows of transition metals.
- While Z_{eff} increases across row, so does number of nonbonding electrons.
 - These repel each other and increase radius.

- Transition metals often have more than one common oxidation state.
 - ➤ Most have +2 state due to loss of s electrons.
 - Oxidation numbers
 greater than 2 are due
 to loss of d electrons as
 well as s.


and

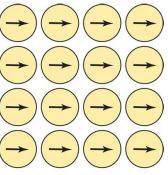

Many form compounds that have colors.

- Many have significant magnetic properties.
 - ➤ In diamagnetic elements, all electron spins are paired.
 - Therefore, there is no net magnetic moment.



- In paramagnetic atoms and ions, there are unpaired spins.
- The magnetic fields are randomly arranged, though, unless placed in an external magnetic field.

In ferromagnetic substances the orientations of magnetic fields from unpaired electrons are affected by spins from electrons around them.



When an external field is applied and then removed, the substance maintains the magnetic moment and becomes a permanent magnet.

Chromium

- Oxidized by HCI or H₂SO₄ to form blue Cr²⁺ ion.
- Cr²⁺ oxidized by O₂ in air to form green Cr³⁺.

 Cr also found in +6 state as in CrO₄²⁻ and the strong oxidizer Cr₂O₇²⁻.

Iron

- Exists in solution in
 +2 or +3 state.
- Elemental iron reacts with nonoxidizing acids to form Fe²⁺, which oxidizes in air to Fe³⁺.

Iron

- Brown water running from a faucet is caused by insoluble Fe₂O3.
- Fe³⁺ soluble in acidic solution, but forms a hydrated oxide as red-brown gel in basic solution,

and

Copper

- In solution exists in +1 or +2 state.
- +1 salts generally white, insoluble.
- +2 salts commonly blue, water-soluble.

