
DEFINITE INTEGRAL

Then, the definite integral of f from a to b is

provided that this limit exists. 

If it does exist, we say f is integrable on [a, b].
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INTEGRAL SIGN

The symbol ∫ was introduced by Leibniz 
and is called an integral sign.

 It is an elongated S.

 It was chosen because an integral is 
a limit of sums. 

Note 1



INTEGRATION

The procedure of 
calculating an integral 
is called integration.

Note 1



DEFINITE INTEGRAL

The definite integral is a number.

It does not depend on x. 

In fact, we could use any letter in place of x 
without changing the value of the integral:
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RIEMANN SUM

The sum

that occurs in Definition 2 is called 
a Riemann sum.

 It is named after the German mathematician 
Bernhard Riemann (1826–1866).
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RIEMANN SUM

So, Definition 2 says that the definite integral 
of an integrable function can be approximated 
to within any desired degree of accuracy by 
a Riemann sum.

Note 3



RIEMANN SUM

We know that, if f happens to be positive, 
the Riemann sum can be interpreted as:

 A sum of areas of approximating rectangles

Note 3



RIEMANN SUM

Comparing Definition 2 with the definition 
of area in Section 5.1, we see that the definite 
integral can be interpreted as:

 The area under the curve y = f(x) from a to b
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RIEMANN SUM

If f takes on both positive and negative values, 
then the Riemann sum is:

 The sum of the areas of the rectangles that lie 
above the x-axis and the negatives of the areas 
of the rectangles that lie below the x-axis

 That is, the areas of 
the gold rectangles 
minus the areas of 
the blue rectangles

Note 3



RIEMANN SUM

When we take the limit of such 
Riemann sums, we get the situation 
illustrated here.

Note 3
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NET AREA

A definite integral can be interpreted as 
a net area, that is, a difference of areas:

 A1 is the area of the region 
above the x-axis and below the graph of f.

 A2 is the area of
the region below
the x-axis and
above
the graph of f.
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UNEQUAL SUBINTERVALS

Though we have defined by dividing 
[a, b] into subintervals of equal width, there 
are situations in which it is advantageous 
to work with subintervals of unequal width.

 In Exercise 14 in Section 5.1, NASA provided velocity 
data at times that were not equally spaced.

 We were still able to estimate the distance traveled.
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UNEQUAL SUBINTERVALS

There are methods for numerical 
integration that take advantage of 
unequal subintervals.

Note 4



UNEQUAL SUBINTERVALS

If the subinterval widths are ∆x1, ∆x2, …, ∆xn, 
we have to ensure that all these widths 
approach 0 in the limiting process.

 This happens if the largest width, max ∆xi , 
approaches 0.

Note 4



UNEQUAL SUBINTERVALS

Thus, in this case, the definition of 
a definite integral becomes:
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INTEGRABLE FUNCTIONS

We have defined the definite integral 
for an integrable function.

However, not all functions are integrable.

Note 5



INTEGRABLE FUNCTIONS

The following theorem shows that 
the most commonly occurring functions 
are, in fact, integrable.

 It is proved in more advanced courses.



INTEGRABLE FUNCTIONS

If f is continuous on [a, b], or if f has only 
a finite number of jump discontinuities, then 
f is integrable on [a, b].

That is, the definite integral                exists.( )
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INTEGRABLE FUNCTIONS

If f is integrable on [a, b], then the limit 
in Definition 2 exists and gives the same 
value, no matter how we choose the sample 
points xi*. 



INTEGRABLE FUNCTIONS

To simplify the calculation of the integral, 
we often take the sample points to be right 
endpoints.

 Then, xi* = xi and the definition of an integral 
simplifies as follows.



INTEGRABLE FUNCTIONS

If f is integrable on [a, b], then

where 
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DEFINITE INTEGRAL

Express 

as an integral on the interval [0, π].

 Comparing the given limit with the limit 
in Theorem 4, we see that they will be 
identical if we choose f(x) = x3 + x sin x.
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DEFINITE INTEGRAL

We are given that a = 0 and b = π.

So, by Theorem 4, we have:
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DEFINITE INTEGRAL

Later, when we apply the definite integral to 
physical situations, it will be important to 
recognize limits of sums as integrals—as we 
did in Example 1.



DEFINITE INTEGRAL

When Leibniz chose the notation for 
an integral, he chose the ingredients 
as reminders of the limiting process. 



DEFINITE INTEGRAL

In general, when we write

we replace: 
 lim Σ by ∫
 xi* by x
 ∆x by dx
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EVALUATING INTEGRALS

When we use a limit to evaluate 
a definite integral, we need to know 
how to work with sums. 



EVALUATING INTEGRALS

The following three equations 
give formulas for sums of powers 
of positive integers. 



EVALUATING INTEGRALS

Equation 5 may be familiar to you 
from a course in algebra.
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EVALUATING INTEGRALS

Equations 6 and 7 were discussed in 
Section 5.1 and are proved in Appendix E.
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EVALUATING INTEGRALS

The remaining formulas are simple rules for 
working with sigma notation:

Eqns. 8, 9, 10 & 11
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EVALUATING INTEGRALS

a.Evaluate the Riemann sum for f(x) = x3 – 6x
taking the sample points to be right  
endpoints and a = 0, b = 3, and n = 6.

b.Evaluate                       .
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Example 2



EVALUATING INTEGRALS

With n = 6,

 The interval width is:

 The right endpoints are: 
x1 = 0.5, x2 = 1.0, x3 = 1.5, 
x4 = 2.0, x5 = 2.5, x6 = 3.0

3 0 1
6 2

b ax
n
− −

∆ = = =

Example 2 a



EVALUATING INTEGRALS

So, the Riemann sum is:
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EVALUATING INTEGRALS

Notice that f is not a positive function.

So, the Riemann sum does not 
represent a sum of areas of rectangles. 

Example 2 a



EVALUATING INTEGRALS

However, it does represent the sum of the areas of 
the gold rectangles (above the x-axis) minus the 
sum of the areas of the blue rectangles (below the 
x-axis).

Example 2 a



EVALUATING INTEGRALS

With n subintervals, we have:

Thus, x0 = 0, x1 = 3/n, x2 = 6/n, x3 = 9/n.

In general, xi = 3i/n.
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EVALUATING INTEGRALS

Since we are using right 
endpoints, we can use Theorem 4, 
as follows.

Example 2 b



EVALUATING INTEGRALS
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EVALUATING INTEGRALS Example 2 b
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