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we found that the work done by a 

constant force F in moving an object 

from a point P to another point in space is: 

W = F . D 

where D =         is the displacement vector.PQ
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Now, suppose that 

F =  P i + Q j + R k

is a continuous force field on     , 

such as: 

 The gravitational field of Example 4 in Section 12.1

 The electric force field of Example 5 in Section 12.1
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A force field on      could be regarded as 

a special case where R = 0 and P and Q

depend only on x and y. 

 We wish to compute the work done by 

this force in moving a particle along 

a smooth curve C.
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We divide C into subarcs Pi-1Pi with 

lengths ∆si by dividing the parameter 

interval [a, b] into subintervals of equal 

width.



LINE INTEGRALS OF VECTOR FIELDS

The first figure shows the two-dimensional 

case. 

The second shows the three-dimensional one. 
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Choose a point Pi
*(xi

*, yi
*, zi

*) on 

the i th subarc corresponding to 

the parameter value ti
*.
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If ∆si is small, then as the particle moves 

from Pi-1 to Pi along the curve, it proceeds 

approximately in the direction of T(ti
*), 

the unit tangent vector 

at Pi
*. 



LINE INTEGRALS OF VECTOR FIELDS

Thus, the work done by the force F

in moving the particle Pi-1 from to Pi

is approximately 

F(xi
*, yi

*, zi
*) . [∆si T(ti

*)] 

= [F(xi
*, yi

*, zi
*) . T(ti

*)] ∆si
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The total work done in moving the particle 

along C is approximately

where T(x, y, z) is the unit tangent vector 

at the point (x, y, z) on C.
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Intuitively, we see that these 

approximations ought to become 

better as n becomes larger.
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Thus, we define the work W done by 

the force field F as the limit of the Riemann 

sums in Formula 11, namely,

 This says that work is the line integral 

with respect to arc length of the tangential 

component of the force.

Equation 12
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If the curve C is given by the vector equation 

r(t) = x(t) i + y(t) j + z(t) k 

then 

T(t) = r’(t)/|r’(t)|
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So, using Equation 9, we can rewrite 

Equation 12 in the form
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This integral is often abbreviated 

as ∫C F . dr 

and occurs in other areas of physics as well. 

 Thus, we make the following definition for 

the line integral of any continuous vector field. 
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Let F be a continuous vector field defined on 

a smooth curve C given by a vector function 

r(t), a ≤ t ≤ b. 

Then, the line integral of F along C is:  

Definition 13
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When using Definition 13, remember F(r(t)) 

is just an abbreviation for 

F(x(t), y(t), z(t))

 So, we evaluate F(r(t)) simply by putting 

x = x(t), y = y(t), and z = z(t) 

in the expression for F(x, y, z).

 Notice also that we can formally write dr = r’(t) dt. 
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Find the work done by the force field 

F(x, y) = x2 i – xy j

in moving a particle along 

the quarter-circle 

r(t) = cos t i + sin t j,    0 ≤ t ≤ π/2

Example 7
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Since x = cos t and y = sin t, 

we have: 

F(r(t)) = cos2t i – cos t sin t j

and 

r’(t) = –sin t i + cos t j

Example 7
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Therefore, the work done is:
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The figure shows the force field and 

the curve in Example 7.

 The work done is 

negative because 

the field impedes 

movement along 

the curve.
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Although ∫C F . dr = ∫C F
. T ds and integrals 

with respect to arc length are unchanged 

when orientation is reversed, it is still true 

that:

 This is because the unit tangent vector T

is replaced by its negative when C is replaced 

by –C.
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Evaluate 

∫C F . dr 

where:

 F(x, y, z) = xy i + yz j + zx k

 C is the twisted cubic given by

x = t y = t2 z = t3 0 ≤ t ≤ 1

Example 8
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We have: 

r(t) = t i + t2 j + t3 k

r’(t) = i + 2t j + 3t2 k

F(r(t)) = t3 i + t5 j + t4 k

Example 8
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Thus, 

Example 8
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The figure shows the twisted cubic 

in Example 8 and some typical vectors acting 

at three points on C. 
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Finally, we note the connection 

between line integrals of vector fields 

and line integrals of scalar fields. 
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Suppose the vector field F on       is given 

in component form by:

F = P i + Q j + R k

 We use Definition 13 to compute 

its line integral along C, as follows.
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However, that last integral is precisely 

the line integral in Formula 10. 

Hence, we have: 

where F = P i + Q j + R k

C C
d Pdx Qdy Rdz    F r
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For example, the integral 

∫C y dx + z dy + x dz

in Example 6 could be expressed as 

∫C F . dr

where 

F(x, y, z) = y i + z j + x k


