
LINE INTEGRALS OF 

VECTOR FIELDS

.



LINE INTEGRALS OF VECTOR FIELDS

we found that the work done by a 

constant force F in moving an object 

from a point P to another point in space is: 

W = F . D 

where D =         is the displacement vector.PQ
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Now, suppose that 

F =  P i + Q j + R k

is a continuous force field on     , 

such as: 

 The gravitational field of Example 4 in Section 12.1

 The electric force field of Example 5 in Section 12.1
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A force field on      could be regarded as 

a special case where R = 0 and P and Q

depend only on x and y. 

 We wish to compute the work done by 

this force in moving a particle along 

a smooth curve C.
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We divide C into subarcs Pi-1Pi with 

lengths ∆si by dividing the parameter 

interval [a, b] into subintervals of equal 

width.
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The first figure shows the two-dimensional 

case. 

The second shows the three-dimensional one. 
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Choose a point Pi
*(xi

*, yi
*, zi

*) on 

the i th subarc corresponding to 

the parameter value ti
*.



LINE INTEGRALS OF VECTOR FIELDS

If ∆si is small, then as the particle moves 

from Pi-1 to Pi along the curve, it proceeds 

approximately in the direction of T(ti
*), 

the unit tangent vector 

at Pi
*. 
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Thus, the work done by the force F

in moving the particle Pi-1 from to Pi

is approximately 

F(xi
*, yi

*, zi
*) . [∆si T(ti

*)] 

= [F(xi
*, yi

*, zi
*) . T(ti

*)] ∆si
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The total work done in moving the particle 

along C is approximately

where T(x, y, z) is the unit tangent vector 

at the point (x, y, z) on C.
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Intuitively, we see that these 

approximations ought to become 

better as n becomes larger.
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Thus, we define the work W done by 

the force field F as the limit of the Riemann 

sums in Formula 11, namely,

 This says that work is the line integral 

with respect to arc length of the tangential 

component of the force.

Equation 12
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If the curve C is given by the vector equation 

r(t) = x(t) i + y(t) j + z(t) k 

then 

T(t) = r’(t)/|r’(t)|
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So, using Equation 9, we can rewrite 

Equation 12 in the form
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This integral is often abbreviated 

as ∫C F . dr 

and occurs in other areas of physics as well. 

 Thus, we make the following definition for 

the line integral of any continuous vector field. 
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Let F be a continuous vector field defined on 

a smooth curve C given by a vector function 

r(t), a ≤ t ≤ b. 

Then, the line integral of F along C is:  

Definition 13
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When using Definition 13, remember F(r(t)) 

is just an abbreviation for 

F(x(t), y(t), z(t))

 So, we evaluate F(r(t)) simply by putting 

x = x(t), y = y(t), and z = z(t) 

in the expression for F(x, y, z).

 Notice also that we can formally write dr = r’(t) dt. 
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Find the work done by the force field 

F(x, y) = x2 i – xy j

in moving a particle along 

the quarter-circle 

r(t) = cos t i + sin t j,    0 ≤ t ≤ π/2

Example 7
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Since x = cos t and y = sin t, 

we have: 

F(r(t)) = cos2t i – cos t sin t j

and 

r’(t) = –sin t i + cos t j

Example 7
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Therefore, the work done is:
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The figure shows the force field and 

the curve in Example 7.

 The work done is 

negative because 

the field impedes 

movement along 

the curve.
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Although ∫C F . dr = ∫C F
. T ds and integrals 

with respect to arc length are unchanged 

when orientation is reversed, it is still true 

that:

 This is because the unit tangent vector T

is replaced by its negative when C is replaced 

by –C.
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Evaluate 

∫C F . dr 

where:

 F(x, y, z) = xy i + yz j + zx k

 C is the twisted cubic given by

x = t y = t2 z = t3 0 ≤ t ≤ 1

Example 8
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We have: 

r(t) = t i + t2 j + t3 k

r’(t) = i + 2t j + 3t2 k

F(r(t)) = t3 i + t5 j + t4 k

Example 8
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Thus, 

Example 8
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The figure shows the twisted cubic 

in Example 8 and some typical vectors acting 

at three points on C. 
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Finally, we note the connection 

between line integrals of vector fields 

and line integrals of scalar fields. 
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Suppose the vector field F on       is given 

in component form by:

F = P i + Q j + R k

 We use Definition 13 to compute 

its line integral along C, as follows.
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However, that last integral is precisely 

the line integral in Formula 10. 

Hence, we have: 

where F = P i + Q j + R k

C C
d Pdx Qdy Rdz    F r
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For example, the integral 

∫C y dx + z dy + x dz

in Example 6 could be expressed as 

∫C F . dr

where 

F(x, y, z) = y i + z j + x k


