.

we found that the work done by a constant force **F** in moving an object from a point *P* to another point in space is:

 $W = \mathbf{F} \cdot \mathbf{D}$

where $D = PQ$ is the displacement vector. $\overline{}$

Now, suppose that

$F = P i + Q j + R k$

is a continuous force field on \circ $\frac{3}{7}$ such as:

- **The gravitational field of Example 4 in Section 12.1**
- The electric force field of Example 5 in Section 12.1

A force field on \degree \degree could be regarded as a special case where *R* = 0 and *P* and *Q* depend only on *x* and *y*.

• We wish to compute the work done by this force in moving a particle along a smooth curve *C*.

We divide *C* into subarcs $P_{i,1}P_i$ with lengths ∆*sⁱ* by dividing the parameter interval [*a*, *b*] into subintervals of equal width.

The first figure shows the two-dimensional case.

The second shows the three-dimensional one.

Choose a point $P_i^*(x_i^*, y_i^*, z_i^*)$ on the *i* th subarc corresponding to the parameter value *t i* * .

If ∆*sⁱ* is small, then as the particle moves from P_{i-1} to P_i along the curve, it proceeds approximately in the direction of **T**(*t i* $\big(\begin{array}{c} \ast \ \cdot \end{array}\big)$, the unit tangent vector Z \wedge

at P_i^* .

Thus, the work done by the force **F** in moving the particle P_{i-1} from to P_i is approximately

> $\mathbf{F}(\mathbf{x}_i^*, \mathbf{y}_i^*, \mathbf{z}_i^*) \cdot [\Delta s_i \mathbf{T}(t_i)]$ $\binom{*}{i}$ $=$ $[{\bf F}(x_i^*, y_i^*, z_i^*) \cdot {\bf T}(t_i^*)$ *)] ∆*si*

Formula 11

The total work done in moving the particle along *C* is approximately

$$
\sum_{i=1}^{n} \Big[\mathbf{F}(x_i^*, y_i^*, z_i^*) \cdot \mathbf{T}(x_i^*, y_i^*, z_i^*) \Big] \Delta s_i
$$

where **T**(*x*, *y*, *z*) is the unit tangent vector at the point (*x*, *y*, *z*) on *C*.

Intuitively, we see that these approximations ought to become better as *n* becomes larger.

Thus, we define the work *W* done by the force field **F** as the limit of the Riemann

sums in Formula 11, namely,
\n
$$
W = \int_C \mathbf{F}(x, y, z) \cdot \mathbf{T}(x, y, z) ds = \int_C \mathbf{F} \cdot \mathbf{T} ds
$$

This says that work is the line integral with respect to arc length of the tangential component of the force.

If the curve *C* is given by the vector equation

$$

then

 $T(t) = r'(t)/|r'(t)|$

So, using Equation 9, we can rewrite Equation 12 in the form

$$
W = \int_{a}^{b} \left[\mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \right] |\mathbf{r}'(t)| dt
$$

$$
= \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt
$$

This integral is often abbreviated as $\int_C \mathbf{F} \cdot d\mathbf{r}$

and occurs in other areas of physics as well.

Thus, we make the following definition for the line integral of any continuous vector field.

Definition 13

Let **F** be a continuous vector field defined on a smooth curve *C* given by a vector function **r**(*t*), *a* ≤ *t* ≤ *b*.

Then, the line integral of **F** along **C** is:
\n
$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_C \mathbf{F} \cdot \mathbf{T} ds
$$

When using Definition 13, remember **F**(**r**(*t*)) is just an abbreviation for

F(*x*(*t*), *y*(*t*), *z*(*t*))

- So, we evaluate $F(r(t))$ simply by putting $x = x(t)$, $y = y(t)$, and $z = z(t)$ in the expression for **F**(*x*, *y*, *z*).
- Notice also that we can formally write $d\mathbf{r} = \mathbf{r}'(t) dt$.

Example 7

Find the work done by the force field

$$
F(x, y) = x^2 i - xy j
$$

in moving a particle along the quarter-circle $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$, $0 \le t \le \pi/2$

Example 7

Since $x = \cos t$ and $y = \sin t$, we have:

 $$

and

$\mathbf{r}'(t) = -\sin t \mathbf{i} + \cos t \mathbf{j}$

Example 7

Therefore, the work done is:

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi/2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt
$$

$$
= \int_0^{\pi/2} \left(-2\cos^2 t \sin t\right) dt
$$

$$
= 2\frac{\cos^3 t}{3} \bigg|_0^{\pi/2} = -\frac{2}{3}
$$

The figure shows the force field and the curve in Example 7.

The work done is negative because the field impedes movement along the curve.

Note

Although $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$ and integrals with respect to arc length are unchanged when orientation is reversed, it is still true that:

$$
\int_{-C} \mathbf{F} \cdot d\mathbf{r} = -\int_{C} \mathbf{F} \cdot d\mathbf{r}
$$

 This is because the unit tangent vector **T** is replaced by its negative when *C* is replaced by –*C*.

Example 8

Evaluate

 \int_C **F** \cdot *d***r**

where:

- **F**(*x*, *y*, *z*) = *xy* **i** + *yz* **j** + *zx* **k**
- C is the twisted cubic given by

 $x = t$ $y = t^2$ $z = t^3$ $0 \le t \le 1$

Example 8

We have:

$\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$

$\mathbf{r}'(t) = \mathbf{i} + 2t \mathbf{j} + 3t^2 \mathbf{k}$

 $F(r(t)) = t^3 i + t^5 j + t^4 k$

Example 8

Thus,

 $(\mathbf{r}(t)\cdot\mathbf{r}'(t))$ $\int_{0}^{1} \mathbf{F}(\mathbf{r}(t) \cdot \mathbf{r}) dt$ $3 + 5t^{6}$ 0 4 $5t^7$ 7^1 $(t) \cdot \mathbf{r}'$
 $5t^6$) a
 $\begin{bmatrix} 7 \\ -1 \end{bmatrix}$ = $5t^7$ ¹ 27 $\left(\frac{3i}{4} + \frac{3i}{7} \right)_{0} = \frac{27}{28}$ *C* $\cdot d\mathbf{r} = \int_0^1 \mathbf{F}(\mathbf{r}(t) \cdot \mathbf{r}'(t)) dt$ $=\int_0^1 (t^3 + 5t^6) dt$ $=\frac{t^4}{4} + \frac{5t^7}{7}\bigg]_0^1 = \frac{27}{28}$ $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F}(\mathbf{r}) dt$
= $\int_0^1 (t^3 + 5t^2) dt$ $\mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F}(\mathbf{r}(t) \cdot \mathbf{r})$

The figure shows the twisted cubic in Example 8 and some typical vectors acting at three points on *C*.

Finally, we note the connection between line integrals of vector fields and line integrals of scalar fields.

Suppose the vector field **F** on ^{o 3} is given in component form by:

$F = P i + Q j + R k$

 We use Definition 13 to compute its line integral along *C*, as follows.

 $(\mathbf{r}(t))\cdot\mathbf{r}'(t)$ $(P\mathbf{i}+Q\mathbf{j}+R\mathbf{k})\cdot(x'(t)\mathbf{i}+y'(t)\mathbf{j}+z'(t)\mathbf{k})$ $(x(t), y(t), z(t))x'(t)$ $(x(t), y(t), z(t))y'(t)$ $(x(t), y(t), z(t))z'(t)$ $f(t)\mathbf{i} + y'(t)\mathbf{j} + z'$ $\mathbf{j}+R\mathbf{k}\mathbf{)}\cdot(x'(t)$
, $y(t), z(t))x'$ $y(t), z(t))x'(t)$
, $y(t), z(t))y'$ $\int_{a}^{b} + Q(x(t), y(t), z(t)) y$
+R(x(t), y(t), z(t))z' *C b* $\int_{C} \mathbf{F} \cdot d\mathbf{r}$
 $= \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$ *b* = $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$

= $\int_a^b (P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}) \cdot (x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}) dt$ *a* vector
 $\int_C \mathbf{F} \cdot d\mathbf{r}$ $P \mathbf{i} + Q \mathbf{j} + R \mathbf{k} \mathbf{k} \cdot (x'(t)) \mathbf{i}$
 $P(x(t), y(t), z(t)) x'(t)$ $Q(x(t), y(t), z(t))x'(t)$
 $Q(x(t), y(t), z(t))y'(t)$ $Q(x(t), y(t), z(t)) y'(t)$
 $R(x(t), y(t), z(t)) z'(t)$ $(P\mathbf{i}+Q\mathbf{j}+R\mathbf{k})\cdot(x'(t)\mathbf{i}+y'(t)\mathbf{j}+z$
 $\begin{bmatrix} P(x(t),y(t),z(t))x'(t) \end{bmatrix}$ J_a
= \int_a^b $P(x(t), y(t), z(t))x'(t)$
= \int_a^b + $Q(x(t), y(t), z(t))y'(t)$ +Q(x(t), y(t), z(t)) y'(t)
+R(x(t), y(t), z(t)) z'(t) \int

However, that last integral is precisely the line integral in Formula 10.

Hence, we have:

 $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P dx + Q dy + R dz$

where $F = P i + Q j + R k$

VECTOR & SCALAR FIELDS For example, the integral ∫*C y dx* + *z dy* + *x dz* in Example 6 could be expressed as ∫*C* **F .** *d***r**

where

 $F(x, y, z) = y\mathbf{i} + z\mathbf{j} + x\mathbf{k}$