
CHANGE OF VARIABLES 
IN MULTIPLE 
INTEGRALS
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CHANGE OF VARIABLES IN SINGLE 
INTEGRALS 

In one-dimensional calculus. we often use a 

change of variable (a substitution) to simplify 

an integral.
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TRANSFORMATION

More generally, we consider a change of 

variables that is given by a transformation T 

from the uv-plane to the xy-plane:

T(u, v) = (x, y)

where x and y are related to u and v by

x = g(u, v) y = h(u, v)

We sometimes write these as

x = x(u, v) y = y(u, v)
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C1 TRANSFORMATION

We usually assume that T is a C1 

transformation.

 This means that g and h have continuous first-order 

partial derivatives.



P512.8

TRANSFORMATION

A transformation T is really just a function 

whose domain and range are both subsets 

of     .2
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IMAGE & ONE-TO-ONE 
TRANSFORMATION

If T(u1, v1) = (x1, y1), then the point (x1, y1) is 

called the image of the point (u1, v1).

If no two points have the same image, T is 

called one-to-one.
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CHANGE OF VARIABLES 

Figure 1 shows the effect of a transformation T

on a region S in the uv-plane.

 T transforms S into a region R in the xy-plane called 

the image of S, consisting of the images of all points 

in S.



P812.8

INVERSE TRANSFORMATION

If T is a one-to-one transformation, it has an 

inverse transformation T–1 from the xy–

plane to the uv-plane.
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INVERSE TRANSFORMATION

Then, it may be possible to solve Equations 3 

for u and v in terms of x and y : 

u = G(x, y)

v = H(x, y)
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Example 1

A transformation is defined by: 

x = u2 – v2

y = 2uv

Find the image of the square

S = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}
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Example 1 SOLUTION

The transformation maps the boundary of S into 

the boundary of the image.

 So, we begin by finding the images of the sides of S. 

The first side, S1, is given by: 

v = 0 (0 ≤ u ≤ 1)

 See Figure 2.
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Example 1 SOLUTION

From the given equations, we have: 

x = u2, y = 0, and so 0 ≤ x ≤ 1.

 Thus, S1 is mapped into the line segment from (0, 0) 

to (1, 0) in the xy-plane.

The second side, S2, is: 

u = 1 (0 ≤ v ≤ 1)

 Putting u = 1 in the given 

equations, we get: 

x = 1 – v2

y = 2v
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Example 1 SOLUTION

Eliminating v, we obtain:

which is part of a parabola.

Similarly, S3 is given by: 

v = 1 (0 ≤ u ≤ 1)

Its image is the parabolic arc 
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Example 1 SOLUTION

Finally, S4 is given by: 

u = 0(0 ≤ v ≤ 1) 

Its image is: 

x = –v2, y = 0 

that is, 

–1 ≤ x ≤ 0
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Example 1 SOLUTION

Notice that as, we move around the square in 

the counterclockwise direction, we also move 

around the parabolic region in the 

counterclockwise direction. 
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Example 1 SOLUTION

The image of S is the 

region R (shown in Figure 

2) bounded by:

 The x-axis.

 The parabolas given by 

Equations 4 and 5. 
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DOUBLE INTEGRALS

Now, let’s see how a change of variables affects 

a double integral. 

We start with a small rectangle S in the uv-plane 

whose:

 Lower left corner is the 

point (u0, v0).

 Dimensions are ∆u and ∆v.

 See Figure 3. 
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DOUBLE INTEGRALS

The image of S is a region R in the xy-plane, one 

of whose boundary points is: 

(x0, y0) = T(u0, v0)
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DOUBLE INTEGRALS

The vector 

r(u, v) = g(u, v) i + h(u, v) j 

is the position vector of the image of the point 

(u, v).



P2012.8

DOUBLE INTEGRALS

The equation of the lower side of S is: 

v = v0

 Its image curve is given by the vector function 

r(u, v0).
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DOUBLE INTEGRALS

The tangent vector at (x0, y0) to this image curve 

is: 

0 0 0 0( , ) ( , )u u u

x y
g u v h u v

u u

 
   

 
r i j i j
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DOUBLE INTEGRALS

Similarly, the tangent vector at (x0, y0) to the 

image curve of the left side of S (u = u0) is:

0 0 0 0( , ) ( , )v v v

x y
g u v h u v

v v

 
   

 
r i j i j
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DOUBLE INTEGRALS

We can approximate the image region R = T(S) 

by a parallelogram determined by the secant 

vectors
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DOUBLE INTEGRALS

However,

So,

 Similarly, 

0 0 0 0
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DOUBLE INTEGRALS

This means that we can approximate R by a 

parallelogram determined by the vectors 

∆u ru and ∆v rv

See Figure 5.
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DOUBLE INTEGRALS

Thus, we can approximate the area of R by the 

area of this parallelogram, which, from Section 

10.4, is

|(∆u ru) × (∆v rv)| = |ru × rv| ∆u ∆v
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DOUBLE INTEGRALS

Computing the cross product, we obtain:
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JACOBIAN

The determinant that arises in this calculation is 

called the Jacobian of the transformation.

 It is given a special notation.
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The Jacobian of the transformation T given by 

x = g(u, v) and y = h(u, v) is

Definition 7
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JACOBIAN OF T

With this notation, we can use Equation 6 to 

give an approximation to the area ∆A of R:

where the Jacobian is evaluated at (u0, v0).
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x y
A u v

u v
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JACOBIAN

The Jacobian is named after the German 

mathematician Carl Gustav Jacob Jacobi (1804–

1851).

 The French mathematician Cauchy first used these 

special determinants involving partial derivatives.

 Jacobi, though, developed them into a method for 

evaluating multiple integrals.



P3212.8

DOUBLE INTEGRALS

Next, we divide a region S in the uv-plane into 

rectangles Sij and call their images in the xy-

plane Rij.

See Figure 6.
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DOUBLE INTEGRALS

Applying Approximation 8 to each Rij , we 

approximate the double integral of f over R as 

follows.
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DOUBLE INTEGRALS

where the Jacobian is evaluated at (ui, vj).

1 1

1 1

( , )

( , )

( , )
( ( , ), ( , ))

( , )

R

m n

i j

i j

m n

i j i j

i j

f x y dA

f x y A

x y
f g u v h u v u v

u v

 

 

 


  











P3512.8

DOUBLE INTEGRALS

Notice that this double sum is a Riemann sum 

for the integral

The foregoing argument suggests that the 

following theorem is true.

 A full proof is given in books on advanced calculus. 

( , )
( ( , ), ( , ))

( , )
S

x y
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

Suppose T is a C1 transformation whose 

Jacobian is nonzero and that maps a region S in 

the uv-plane onto a region R in the xy-plane. 

Suppose f is continuous on R and that R and S

are type I or type II plane regions. Suppose T is 

one-to-one, except perhaps on the boundary of S. 

Then

( , )
( , ) ( ( , ), ( , ))

( , )
R S

x y
f x y dA f x u v y u v du dv

u v




 



P3712.8

CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

Theorem 9 says that we change from an integral 

in x and y to an integral in u and v by expressing 

x and y in terms of u and v and writing:

Notice the similarity between Theorem 9 and 

the one-dimensional formula in Equation 2.

 Instead of the derivative dx/du, we have the absolute 

value of the Jacobian, that is, 

|∂(x, y)/∂(u, v)|

( , )

( , )

x y
dA du dv

u v
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

As a first illustration of Theorem 9, we show 

that the formula for integration in polar 

coordinates is just a special case. 
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

Here, the transformation T from the r-plane to 

the xy-plane is given by: 

x = g(r, ) = r cos 

y = h(r, ) = r sin 
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

The geometry of the 

transformation is shown in 

Figure 7.

 T maps an ordinary rectangle 

in the r -plane to a polar 

rectangle in the xy-plane.
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

The Jacobian of T is:

2 2

cos sin( , )

sin cos( , )

cos sin
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

So, Theorem 9 gives:

 This is the same as Formula 2 in Section 12.3 
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Example 2

Use the change of variables x = u2 – v2, y = 2uv 

to evaluate the integral where R is the 

region bounded by:

 The x-axis.

 The parabolas y2 = 4 – 4x and y2 = 4 + 4x, y ≥ 0.

R

y dA
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Example 2 SOLUTION

The region R is pictured in Figure 2.
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Example 2 SOLUTION

In Example 1, we discovered that 

T(S) = R 

where S is the square [0, 1] × [0, 1]. 

 Indeed, the reason for making the change of 

variables to evaluate the integral is that S is a much 

simpler region than R.
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Example 2 SOLUTION

First, we need to compute the Jacobian:
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Example 2 SOLUTION

So, by Theorem 9,
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Note

Example 2 was not very difficult to solve as 

we were given a suitable change of variables. 

If we are not supplied with a transformation, the 

first step is to think of an appropriate change of 

variables. 
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Note

If f(x, y) is difficult to integrate, 

 The form of f(x, y) may suggest a transformation.

If the region of integration R is awkward,

 The transformation should be chosen so that the 

corresponding region S in the uv-plane has a 

convenient description. 
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Example 3

Evaluate the integral 

where R is the trapezoidal region with vertices 

(1, 0), (2, 0), (0, –2), (0,–1)

( ) /( )x y x y

R
e dA 
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Example 3 SOLUTION

It isn’t easy to integrate e(x+y)/(x–y).

So, we make a change of variables suggested by 

the form of this function:

u = x + y v = x – y

 These equations define a transformation T–1 from 

the xy-plane to the uv-plane.
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Example 3 SOLUTION

Theorem 9 talks about a transformation T from 

the uv-plane to the xy-plane. 

It is obtained by solving Equations 10 for x and 

y:

x = ½(u + v) y = ½(u – v)
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Example 3 SOLUTION

The Jacobian of T is:

1 1
2 2 1

21 1
2 2

( , )

( , )

x x

x y u v

y yu v

u v
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Example 3 SOLUTION

To find the region S in the uv-plane 

corresponding to R, we note that:

 The sides of R lie on the lines 

y = 0     x – y = 2     x = 0     x – y = 1

 From either Equations 10 or Equations 11, the image 

lines in the uv-plane are: 

u = v     v = 2     u = –v     v = 1
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Example 3 SOLUTION

Thus, the region S is the 

trapezoidal region with 

vertices (1, 1), (2, 2), (–2, 

2), (–1 ,1) shown in 

Figure 8.

S =

{(u, v) | 1 ≤ v ≤ 2, 

–v ≤ u ≤ v}
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Example 3 SOLUTION

So, Theorem 9 gives:
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TRIPLE INTEGRALS

There is a similar change of variables formula 

for triple integrals. 

 Let T be a transformation that maps a region S in 

uvw-space onto a region R in xyz-space by means of 

the equations 

x = g(u, v, w)      y = h(u, v, w)      z = k(u, v, w)
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TRIPLE INTEGRALS

The Jacobian of T is this 3 × 3 determinant:

( , , )

( , , )

x x x

u v w

x y z y y y

u v w u v w

z z z

u v w
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Formula 13

Under hypotheses similar to those in Theorem 9, 

we have this formula for triple integrals:

( , , )

( , , )
( ( , , ), ( , , ), ( , , ))

( , , )

R

S

f x y z dV

x y z
f x u v w y u v w z u v w du dv dw

u v w
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Example 4

Use Formula 13 to derive the formula for triple 

integration in spherical coordinates.

SOLUTION

 The change of variables is given by: 

x = r sin f cos 

y = r sin f sin 

z = r cos f
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Example 4 SOLUTION

We compute the Jacobian as follows:

( , , )

( , , )

sin cos sin sin cos cos

sin sin sin cos cos sin

cos 0 sin

x y z
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Example 4 SOLUTION

2 2 2 2

2 2 2 2
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f
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Example 4 SOLUTION

Since 0 ≤ f ≤ p , we have sin f ≥ 0.

Therefore,

2 2( , , )
sin sin

( , , )

x y z
r f r f

r  f
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Example 4 SOLUTION

Thus, Formula 13 gives:

 This is equivalent to Formula 3 in Section12.7.

2

( , , )

( sin cos , sin sin , cos )

sin
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d d d
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