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CHANGE OF VARIABLES IN SINGLE 
INTEGRALS 

In one-dimensional calculus. we often use a 

change of variable (a substitution) to simplify 

an integral.
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TRANSFORMATION

More generally, we consider a change of 

variables that is given by a transformation T 

from the uv-plane to the xy-plane:

T(u, v) = (x, y)

where x and y are related to u and v by

x = g(u, v) y = h(u, v)

We sometimes write these as

x = x(u, v) y = y(u, v)
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C1 TRANSFORMATION

We usually assume that T is a C1 

transformation.

 This means that g and h have continuous first-order 

partial derivatives.
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TRANSFORMATION

A transformation T is really just a function 

whose domain and range are both subsets 

of     .2
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IMAGE & ONE-TO-ONE 
TRANSFORMATION

If T(u1, v1) = (x1, y1), then the point (x1, y1) is 

called the image of the point (u1, v1).

If no two points have the same image, T is 

called one-to-one.
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CHANGE OF VARIABLES 

Figure 1 shows the effect of a transformation T

on a region S in the uv-plane.

 T transforms S into a region R in the xy-plane called 

the image of S, consisting of the images of all points 

in S.
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INVERSE TRANSFORMATION

If T is a one-to-one transformation, it has an 

inverse transformation T–1 from the xy–

plane to the uv-plane.
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INVERSE TRANSFORMATION

Then, it may be possible to solve Equations 3 

for u and v in terms of x and y : 

u = G(x, y)

v = H(x, y)
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Example 1

A transformation is defined by: 

x = u2 – v2

y = 2uv

Find the image of the square

S = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}
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Example 1 SOLUTION

The transformation maps the boundary of S into 

the boundary of the image.

 So, we begin by finding the images of the sides of S. 

The first side, S1, is given by: 

v = 0 (0 ≤ u ≤ 1)

 See Figure 2.
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Example 1 SOLUTION

From the given equations, we have: 

x = u2, y = 0, and so 0 ≤ x ≤ 1.

 Thus, S1 is mapped into the line segment from (0, 0) 

to (1, 0) in the xy-plane.

The second side, S2, is: 

u = 1 (0 ≤ v ≤ 1)

 Putting u = 1 in the given 

equations, we get: 

x = 1 – v2

y = 2v
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Example 1 SOLUTION

Eliminating v, we obtain:

which is part of a parabola.

Similarly, S3 is given by: 

v = 1 (0 ≤ u ≤ 1)

Its image is the parabolic arc 
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Example 1 SOLUTION

Finally, S4 is given by: 

u = 0(0 ≤ v ≤ 1) 

Its image is: 

x = –v2, y = 0 

that is, 

–1 ≤ x ≤ 0
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Example 1 SOLUTION

Notice that as, we move around the square in 

the counterclockwise direction, we also move 

around the parabolic region in the 

counterclockwise direction. 
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Example 1 SOLUTION

The image of S is the 

region R (shown in Figure 

2) bounded by:

 The x-axis.

 The parabolas given by 

Equations 4 and 5. 
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DOUBLE INTEGRALS

Now, let’s see how a change of variables affects 

a double integral. 

We start with a small rectangle S in the uv-plane 

whose:

 Lower left corner is the 

point (u0, v0).

 Dimensions are ∆u and ∆v.

 See Figure 3. 
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DOUBLE INTEGRALS

The image of S is a region R in the xy-plane, one 

of whose boundary points is: 

(x0, y0) = T(u0, v0)
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DOUBLE INTEGRALS

The vector 

r(u, v) = g(u, v) i + h(u, v) j 

is the position vector of the image of the point 

(u, v).
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DOUBLE INTEGRALS

The equation of the lower side of S is: 

v = v0

 Its image curve is given by the vector function 

r(u, v0).
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DOUBLE INTEGRALS

The tangent vector at (x0, y0) to this image curve 

is: 

0 0 0 0( , ) ( , )u u u

x y
g u v h u v

u u

 
   

 
r i j i j
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DOUBLE INTEGRALS

Similarly, the tangent vector at (x0, y0) to the 

image curve of the left side of S (u = u0) is:

0 0 0 0( , ) ( , )v v v

x y
g u v h u v

v v

 
   

 
r i j i j
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DOUBLE INTEGRALS

We can approximate the image region R = T(S) 

by a parallelogram determined by the secant 

vectors

0 0

0 0

0 0

0 0

( , )

( , )

( , )

( , ) 

u u v

u v

u v v

u v

  



  



a r
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b r
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DOUBLE INTEGRALS

However,

So,

 Similarly, 

0 0 0 0

0

( , ) ( , )
limu
u

u u v u v

u 

  




r r
r

0 0 0 0( , ) ( , ) uu u v u v u   r r r

0 0 0 0( , ) ( , ) vu v v u v v   r r r
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DOUBLE INTEGRALS

This means that we can approximate R by a 

parallelogram determined by the vectors 

∆u ru and ∆v rv

See Figure 5.
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DOUBLE INTEGRALS

Thus, we can approximate the area of R by the 

area of this parallelogram, which, from Section 

10.4, is

|(∆u ru) × (∆v rv)| = |ru × rv| ∆u ∆v
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DOUBLE INTEGRALS

Computing the cross product, we obtain:

0

0

u v

x y x x

x y u u u v

x y y yu u

x y v u u v

v u

   

     
   

    

     

 

i j k

r r k k
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JACOBIAN

The determinant that arises in this calculation is 

called the Jacobian of the transformation.

 It is given a special notation.
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The Jacobian of the transformation T given by 

x = g(u, v) and y = h(u, v) is

Definition 7

( , )

( , )

x x

x y x y x yu v

y yu v u v v u

u v

 

     
  
     

 
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JACOBIAN OF T

With this notation, we can use Equation 6 to 

give an approximation to the area ∆A of R:

where the Jacobian is evaluated at (u0, v0).

( , )

( , )

x y
A u v

u v


   


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JACOBIAN

The Jacobian is named after the German 

mathematician Carl Gustav Jacob Jacobi (1804–

1851).

 The French mathematician Cauchy first used these 

special determinants involving partial derivatives.

 Jacobi, though, developed them into a method for 

evaluating multiple integrals.
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DOUBLE INTEGRALS

Next, we divide a region S in the uv-plane into 

rectangles Sij and call their images in the xy-

plane Rij.

See Figure 6.



P3312.8

DOUBLE INTEGRALS

Applying Approximation 8 to each Rij , we 

approximate the double integral of f over R as 

follows.
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DOUBLE INTEGRALS

where the Jacobian is evaluated at (ui, vj).

1 1

1 1

( , )

( , )

( , )
( ( , ), ( , ))

( , )

R

m n

i j

i j

m n

i j i j

i j

f x y dA

f x y A

x y
f g u v h u v u v

u v

 

 

 


  








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DOUBLE INTEGRALS

Notice that this double sum is a Riemann sum 

for the integral

The foregoing argument suggests that the 

following theorem is true.

 A full proof is given in books on advanced calculus. 

( , )
( ( , ), ( , ))

( , )
S

x y
f g u v h u v du dv

u v




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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

Suppose T is a C1 transformation whose 

Jacobian is nonzero and that maps a region S in 

the uv-plane onto a region R in the xy-plane. 

Suppose f is continuous on R and that R and S

are type I or type II plane regions. Suppose T is 

one-to-one, except perhaps on the boundary of S. 

Then

( , )
( , ) ( ( , ), ( , ))

( , )
R S

x y
f x y dA f x u v y u v du dv

u v




 
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

Theorem 9 says that we change from an integral 

in x and y to an integral in u and v by expressing 

x and y in terms of u and v and writing:

Notice the similarity between Theorem 9 and 

the one-dimensional formula in Equation 2.

 Instead of the derivative dx/du, we have the absolute 

value of the Jacobian, that is, 

|∂(x, y)/∂(u, v)|

( , )

( , )

x y
dA du dv

u v




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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

As a first illustration of Theorem 9, we show 

that the formula for integration in polar 

coordinates is just a special case. 
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

Here, the transformation T from the r-plane to 

the xy-plane is given by: 

x = g(r, ) = r cos 

y = h(r, ) = r sin 
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

The geometry of the 

transformation is shown in 

Figure 7.

 T maps an ordinary rectangle 

in the r -plane to a polar 

rectangle in the xy-plane.
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

The Jacobian of T is:

2 2

cos sin( , )

sin cos( , )

cos sin

0

x x

rx y r

y x rr

r

r r

r

 

 



 

 

  
 

 

 

 

 
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CHANGE OF VARIABLES IN A DOUBLE 
INTEGRAL

So, Theorem 9 gives:

 This is the same as Formula 2 in Section 12.3 

( , )

( , )
( cos , sin )

( , )

( cos , sin )

R

S

b

a

f x y dx dy

x y
f r r dr d

u v

f r r r dr d




  

  












 
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Example 2

Use the change of variables x = u2 – v2, y = 2uv 

to evaluate the integral where R is the 

region bounded by:

 The x-axis.

 The parabolas y2 = 4 – 4x and y2 = 4 + 4x, y ≥ 0.

R

y dA
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Example 2 SOLUTION

The region R is pictured in Figure 2.
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Example 2 SOLUTION

In Example 1, we discovered that 

T(S) = R 

where S is the square [0, 1] × [0, 1]. 

 Indeed, the reason for making the change of 

variables to evaluate the integral is that S is a much 

simpler region than R.



P4612.8

Example 2 SOLUTION

First, we need to compute the Jacobian:

2 2

2 2( , )

2 2( , )

4 4 0

x x

u vx y u v

y y v uu v

u v

u v

 

  
 

 

 

  
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Example 2 SOLUTION

So, by Theorem 9,

1 1
2 2

0 0

1 1
3 3

0 0

1 1
4 2 31 1

4 2 00

1 1
3 2 4

00

( , )
2

( , )

(2 )4( )

8 ( )

8

(2 4 ) 2

R S

u

u

x y
y dA uv dA

u v

uv u v du dv

u v uv du dv

u v u v dv

v v dv v v










 

 

   

      

 

 

 




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Note

Example 2 was not very difficult to solve as 

we were given a suitable change of variables. 

If we are not supplied with a transformation, the 

first step is to think of an appropriate change of 

variables. 



P4912.8

Note

If f(x, y) is difficult to integrate, 

 The form of f(x, y) may suggest a transformation.

If the region of integration R is awkward,

 The transformation should be chosen so that the 

corresponding region S in the uv-plane has a 

convenient description. 



P5012.8

Example 3

Evaluate the integral 

where R is the trapezoidal region with vertices 

(1, 0), (2, 0), (0, –2), (0,–1)

( ) /( )x y x y

R
e dA 


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Example 3 SOLUTION

It isn’t easy to integrate e(x+y)/(x–y).

So, we make a change of variables suggested by 

the form of this function:

u = x + y v = x – y

 These equations define a transformation T–1 from 

the xy-plane to the uv-plane.
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Example 3 SOLUTION

Theorem 9 talks about a transformation T from 

the uv-plane to the xy-plane. 

It is obtained by solving Equations 10 for x and 

y:

x = ½(u + v) y = ½(u – v)
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Example 3 SOLUTION

The Jacobian of T is:

1 1
2 2 1

21 1
2 2

( , )

( , )

x x

x y u v

y yu v

u v

 

  
   

 

 
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Example 3 SOLUTION

To find the region S in the uv-plane 

corresponding to R, we note that:

 The sides of R lie on the lines 

y = 0     x – y = 2     x = 0     x – y = 1

 From either Equations 10 or Equations 11, the image 

lines in the uv-plane are: 

u = v     v = 2     u = –v     v = 1
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Example 3 SOLUTION

Thus, the region S is the 

trapezoidal region with 

vertices (1, 1), (2, 2), (–2, 

2), (–1 ,1) shown in 

Figure 8.

S =

{(u, v) | 1 ≤ v ≤ 2, 

–v ≤ u ≤ v}
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Example 3 SOLUTION

So, Theorem 9 gives:

 

( ) /( ) /

2
/ 1

21

2
/1

2 1

2
1 131

2 41

( , )

( , )

( ) ( )

x y x y u v

R S

v
u v

v

u v
u v

u v

x y
e dA e du dv

u v

e du dv

ve dv

e e v dv e e

 







 








   

   

 

 




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TRIPLE INTEGRALS

There is a similar change of variables formula 

for triple integrals. 

 Let T be a transformation that maps a region S in 

uvw-space onto a region R in xyz-space by means of 

the equations 

x = g(u, v, w)      y = h(u, v, w)      z = k(u, v, w)
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TRIPLE INTEGRALS

The Jacobian of T is this 3 × 3 determinant:

( , , )

( , , )

x x x

u v w

x y z y y y

u v w u v w

z z z

u v w

  

  

   


   

  

  
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Formula 13

Under hypotheses similar to those in Theorem 9, 

we have this formula for triple integrals:

( , , )

( , , )
( ( , , ), ( , , ), ( , , ))

( , , )

R

S

f x y z dV

x y z
f x u v w y u v w z u v w du dv dw

u v w









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Example 4

Use Formula 13 to derive the formula for triple 

integration in spherical coordinates.

SOLUTION

 The change of variables is given by: 

x = r sin f cos 

y = r sin f sin 

z = r cos f
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Example 4 SOLUTION

We compute the Jacobian as follows:

( , , )

( , , )

sin cos sin sin cos cos

sin sin sin cos cos sin

cos 0 sin

x y z

r  f

f  r f  r f 

f  r f  r f 

f r f










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Example 4 SOLUTION

2 2 2 2

2 2 2 2

2 2 2 2

2

sin sin cos cos
cos

sin cos cos sin

sin cos sin sin
sin

sin sin sin cos

cos ( sin cos sin sin cos cos )

sin ( sin cos sin sin )

sin cos sin sin

sin

r f  r f 
f

r f  r f 

f  r f 
r f

f  r f 

f r f f  r f f 

r f r f  r f 

r f f r f f

r f







  

 

  

 
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Example 4 SOLUTION

Since 0 ≤ f ≤ p , we have sin f ≥ 0.

Therefore,

2 2( , , )
sin sin

( , , )

x y z
r f r f

r  f


  


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Example 4 SOLUTION

Thus, Formula 13 gives:

 This is equivalent to Formula 3 in Section12.7.

2

( , , )

( sin cos , sin sin , cos )

sin

R

S

f x y z dV

f

d d d

r f  r f  r f

r f r  f








