IGE OF VARIABLES
IN MULTIPLE
INTEGRALS



CHANGE OF VARIABLES IN SINGLE
INTEGRALS

“*In one-dimensional calculus. we often use a
change of variable (a substitution) to simplify
an integral.




TRANSFORMATION

“*More generally, we consider a change of
variables that is given by a transformation T
from the uv-plane to the xy-plane:

T(u,v) = (x,y)
where x and y are related to u and v by
X = g(u, v) y = h(u, v)
We sometimes write these as
X = X(Uu, V) y =vy(u, v)
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C! TRANSFORMATION

-0~
“*We usually assume that T is a C?

transformation.

This means that g and h have continuous first-order
partial derivatives.
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TRANSFORMATION

A transformation T Is really just a function
whose domain and range are both subsets
of R~




IMAGE & ONE-TO-ONE
TRANSFORMATION

“If T(uy, vy) = (X4, ¥,), then the point (x4, y,) IS
called the image of the point (u,, v,).

“*1f no two points have the same image, T IS
called one-to-one.
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CHANGE OF VARIABLES

“*Figure 1 shows the effect of a transformation T

on aregion S in the uv-plane.
T transforms S into a region R in the xy-plane called
the image of S, consisting of the images of all points
In S.

UA VA

FIGURE 1




INVERSE TRANSFORMATION

“*If T Is a one-to-one transformation, it has an
inverse transformation T—! from the xy—
plane to the uv-plane.

U A VA
s d N
o f”r R —
(241, 09) T \ \‘\
.‘\/// (X1, 1) /}
0 ! 0 x

FIGURE | 12_8 -




INVERSE TRANSFORMATION

“*Then, It may be possible to solve Equations 3
foruand v intermsof xandy:

u=G(xYy)

v=H(XY)
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Example 1

A transformation is defined by:

X = U—V?
y = 2uvV

“*Find the image of the square

S={(u,v)|0<u<l1,0<v<1}
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Example 1 SOLUTION

“»*The transformation maps the boundary of S into
the boundary of the image.
So, we begin by finding the images of the sides of S.
“*The first side, S,, Is given by:
v=0(0<u<l)
See Figure 2.




Example 1 SOLUTION

“*From the given equations, we have:
X=u4y=0,andso0<x<1.
Thus, S, I1s mapped into the line segment from (0, 0)
to (1, 0) in the xy-plane.
“*The second side, S,, IS:
u=10<v<l)
Putting u = 1 in the given
equations, we get:
X=1-—V?
y =2V




Example 1 SOLUTION

“*Eliminating v, we obtain:
2

x:l—y— 0<x<1

4
which is part of a parabola.

“*Similarly, S; Is given by:

v=1(0<u<l)
“*Its image Is the parabolic arc oSy
2
X:y__ s,t S lsz }
4 O s .0 !
(-1<x<0)
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Example 1 SOLUTION

“*Finally, S, Is given by:

u=00<v<l)
“*1ts Image Is:
X=—v2,y=0
that Is,
-1 <x<0
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Example 1 SOLUTION

“*Notice that as, we move around the square In
the counterclockwise direction, we also move
around the parabolic region in the
counterclockwise direction.

(0. 1) 4= (1.1)

Y

O s 1.0 "




Example 1 SOLUTION

“*The image of S Is the
region R (shown In Figure
2) bounded by:

The x-axis. !
The parabolas given by .
Equations 4 and 5. 0.2)

- e FIGURE 2 \




DOUBLE INTEGRALS

“*Now, let’s see how a change of variables affects
a double integral.

“*We start with a small rectangle S in the uv-plane

whose: —
| ower left corner is the =1,
point (Ug, Vo)- N r .
Dimensions are Au and Av. v
See Figure 3. | P
0 ”
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DOUBLE INTEGRALS

“*The image of S is a region R In the xy-plane, one
of whose boundary points Is:

(X Yo) = T(Ug, Vo)

UA YA

u=u,

&L‘ r S T
EE— (X0s Yo)
(U, Ug) Au \

i.‘ - i‘u

Ty
=Y

FIGURE 3
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DOUBLE INTEGRALS
-0~
“*The vector
r(u, v) =g(u, v) 1 + h(u, v) ]
IS the position vector of the image of the point
(u, v).
Avr S T

(g, Ug) Au \

i.‘ - i‘u

LA YA

Y

=Y

0 u 0

_— FIGURE 3 12-8 P19




DOUBLE INTEGRALS

“*The equation of the lower side of S is:

V=V,

Its image curve Is given by the vector function

r(u, vp).
U A YA

U=u,
Ai,‘r S T
(tty. Ug) Au \
v= 1,

0 " 0 x

_— FIGURE 3 12-8 e




DOUBLE INTEGRALS

“*The tangent vector at (x,, Y,) to this image curve

IS.
. . OX. Oy .
r,=9,(,,Vv,)i+h (U,Vv,)j=—i+—]
u u\*~01 Yo u\=0’ "0 ou ou
| U=1Uu, i
Ayr{ S T
(uy, Ugy) Au \
v=1,
0 : 0 }‘.;

FIGURE 3




DOUBLE INTEGRALS

“*Similarly, the tangent vector at (x,, y,) to the
Image curve of the left side of S (u = uy) Is:

. . OX. .
I, = gv(uo’vo)l"l'h/(uo’vo)J :EH'%J

U A VA

Uu=u,

\\ ,r“-u.h_h___xm
& U r S T Z \““Ha\
—— [_.'\'”. _‘_r"n:} - R \/
(1, Ug) Au \ \\;\\/
U= Uy rMJﬂ

0 i 0 X

FIGURE 3

/
4




DOUBLE INTEGRALS
==
“*\We can approximate the image region R = T(S)
by a parallelogram determined by the secant

vectors

a=r(u,+Au,v,)
— (U, V,)
b=r(u,,V, +Av) r (g 0) &

—r(u,,Vv,)

r(uy vy + Av)

r(u, + Au, v,)

FIGURE 4
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DOUBLE INTEGRALS

**However,

. r(u,+Au,v,)—r(u,,v
ru:hm(O o) = MUy, Vo)
Au—0 Au

“* S0,
r(u, +Au,v,)—r(u,,v,) = Aur,
Similarly,

r(Uy,Vv, +Av)—r(u,,v,) = Avr,
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DOUBLE INTEGRALS

“»*This means that we can approximate R by a
parallelogram determined by the vectors
Aur,and Avr,

“»*See Figure 5.

ru, Uy)

FIGURE 5
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DOUBLE INTEGRALS

“*Thus, we can approximate the area of R by the
area of this parallelogram, which, from Section
10.4, 1S

I(Aur,) x(Avr)| =|r,xr,|Au Av
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DOUBLE INTEGRALS

“»Computing the cross product, we obtain:

] K| |ox oy OX  OX
oX oYy ou ou ou oV
ou ou oX oYy oy oy
oy
ou

r,xr, =

OX ov ou ou ov

oV




JACOBIAN

+* The determinant that arises In this calculation Is
called the Jacobian of the transformation.

It is given a special notation.
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Definition 7

The Jacobian of the transformation T given by
X =¢(u,Vv)andy =h(u, v)Is

OX OX
o(xy) |ou | oxoy oxoy
o(u,v) |oy ay| ouav ovau

ou oV
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JACOBIAN OF T

“*With this notation, we can use Equation 6 to
give an approximation to the area AA of R:

AA = Q) Ay
o(u,v)

where the Jacobian is evaluated at (u,, ;).
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JACOBIAN
-
«*The Jacobian 1s named after the German

mathematician Carl Gustav Jacob Jacobi (1804—
1851).

The French mathematician Cauchy first used these
special determinants involving partial derivatives.

Jacobi, though, developed them into a method for
evaluating multiple integrals.




DOUBLE INTEGRALS

“*Next, we divide a region S in the uv-plane into
rectangles S; and call their images in the xy-
plane R;;.

U A

FIGURE 6




DOUBLE INTEGRALS

*Applying Approximation 8 to each R;; , we
approximate the double integral of f over R as
follows.

U A

FIGURE 6




DOUBLE INTEGRALS

[ £ y)dA

ziif(xi Y;) AA

<3S o(x, y)
NiZ;;f(g(Ui,Vj),h(Ui,Vj)) a(U,V) AU AV

<*where the Jacobian Is evaluated at (u;, v;).
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DOUBLE INTEGRALS

+* Notice that this double sum 1s a Riemann sum

for the integral

[ f(g(,v),h(u,v)) g((:j\x//))

du dv

“+The foregoing argument suggests that the

following theorem is true.

A full proof is given in books on advanced calculus.
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CHANGE OF VARIABLES IN A DOUBLE
INTEGRAL

“*Suppose T is a C! transformation whose
Jacobian iIs nonzero and that maps a region S In
the uv-plane onto a region R in the xy-plane.
Suppose f Is continuous on R and that R and S
are type | or type Il plane regions. Suppose T Is

one-to-one, except perhaps on the boundary of S.
Then

Lj T(xy) dA:ij f(x(u,v), y(u,v)) Z((ﬁz)) dudv
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CHANGE OF VARIABLES IN A DOUBLE
INTEGRAL

“*Theorem 9 says that we change from an integral
In X and y to an integral in u and v by expressing
x and y In terms of u and v and writing:

dA =2y
o(u,v)

“*Notice the similarity between Theorem 9 and
the one-dimensional formula in Equation 2.

Instead of the derivative dx/du, we have the absolute
value of the Jacobian, that Is,
|0(x, y)/o(u, V)|

s 128p37




CHANGE OF VARIABLES IN A DOUBLE
INTEGRAL

“*As a first illustration of Theorem 9, we show
that the formula for integration in polar
coordinates Is just a special case.
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CHANGE OF VARIABLES IN A DOUBLE
INTEGRAL

“*Here, the transformation T from the ré&-plane to
the xy-plane is given by:

X=g(r, &) =rcos 6
y=h(r, & =rsin 6
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CHANGE OF VARIABLES IN A M&LE

INTEGRAL o= p

.

“*The geometry of the |
transformation i1s shown In | 0=

Figure 7. 0 : b

T maps an ordinary rectangle l .
In the r@-plane to a polar

rectangle in the xy-plane. /\ ,
0=R, r=2b

\
/ /
r=a ~ =«
///-.’*'-.a
N -
0 X
FIGURE 7

— _ The polar coordinate transformation




CHANGE OF VARIABLES IN A DOUBLE

INTEGRAL
- - -

*The Jacobian of T Is:

OX  OX
ox,y) |or 86 cosd -—rsinéd
or,0) | oy ox | |sin@ rcosd
or o060

= rcos°@+rsin‘ g
=r>0
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CHANGE OF VARIABLES IN A DOUBLE

INTEGRAL

“+S0, Theorem 9 gives:
JJ £(x y) dxdy

R

:” f(rcosé,rsing)

o(X,Y)

o(u,v)

drd@

L eb ]
:L L f(rcosé,rsin@)rdrde

This Is the same as Formula 2 in Section 12.3
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Example 2

“»Use the change of variables x = u? —v?, y = 2uv
to evaluate the integral H ydA where R is the
region bounded by: R

The x-axis.
The parabolas y? =4 —4x and y> = 4 + 4x, y > 0.
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Example 2 SOLUTION

“*The region R Is pictured in Figure 2.

FIGURE 2
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Example 2 SOLUTION

“*In Example 1, we discovered that
T(S) =R
where S is the square [0, 1] x [0, 1].
Indeed, the reason for making the change of

variables to evaluate the integral is that S is a much
simpler region than R.
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Example 2 SOLUTION

“*First, we need to compute the Jacobian:

OX  OX
o(x,y) |ou év U —2v
ou,v) |oy oy| |2v 2u
U ov

=4u° +4v* >0
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Example 2 SOLUTION

“+S0, by Theorem 9,
[[yda=[[au| 2% g
R S

o(u,v)

= j;j§(2uv)4(u2 +v*) dudv

~8 '1j1(u3v+ uv®) du dv

=8:01[ u'v+iu’v 3} dv
1

:j;(2v+4v)dv:[v +v] =2

0
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Note

“*Example 2 was not very difficult to solve as
we were given a suitable change of variables.

“*If we are not supplied with a transformation, the
first step Is to think of an appropriate change of
variables.
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Note

==
“*If f(X, y) Is difficult to integrate,
The form of f(x, y) may suggest a transformation.

“*1f the region of integration R Is awkward,

The transformation should be chosen so that the
corresponding region S in the uv-plane has a
convenient description.
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Example 3

“»*Evaluate the integral
”R NIV A

where R Is the trapezoidal region with vertices
(1, 0), (2, 0), (0, -2), (0,-1)
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Example 3 SOLUTION

-0~
“ It isn’t easy to integrate ex*y)/(x-y),

“+S0, we make a change of variables suggested by
the form of this function:

u=x-+y V=X-—-Y
These equations define a transformation T—! from
the xy-plane to the uv-plane.




Example 3 SOLUTION

**Theorem 9 talks about a transformation T from
the uv-plane to the xy-plane.

“*1t Is obtained by solving Equations 10 for x and
V:

X=%Uu+v) y=%U-V)




Example 3 SOLUTION

**The Jacobian of T Is:

N~

o(x,y)

N N-
|

o(u,v)

2 2|
2@ 2R




Example 3 SOLUTION

“*To find the region S in the uv-plane
corresponding to R, we note that:
The sides of R lie on the lines
y=0 x-y=2 x=0 x-y=1
From either Equations 10 or Equations 11, the image

lines in the uv-plane are:
u=v v=2 u=-v v=1
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Example 3 SOLUTION |

< Thus, the region S is the \\iﬂ,ﬁ( ”
trapezoidal region with v=1
vertices (1, 1), (2, 2), (-2,
2), (<1 ,1) shown In
Figure 8.

&S =
{(u,v) [1<v<2,

-V <u<\v}

FIGURE 8 I




Example 3 SOLUTION

“+S0, Theorem 9 gives:

[[ecerrenaas ffe Z((ﬁ 3; du dv

_j _Ve”’V )dudv

u=v

1 [ve“”] dv
1 u=-v

%j (e—e™)vdv=2(e—e™)
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TRIPLE INTEGRALS
-

“*There is a similar change of variables formula

for triple integrals.

Let T be a transformation that maps a region S In
uvw-space onto a region R In xyz-space by means of

the equations
X=g(u,v,w) y=h(uv,w) z=k(u,v,w)




TRIPLE INTEGRALS

«*The Jacobian of T iIs this 3 x 3 determinant:

OX OX OX
U v ow
o(x,y,z) | oy oy oy
ou,v,w) | ou ov ow
oz 07 01
U v ow
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Formula 13

“*Under hypotheses similar to those in Theorem 9,
we have this formula for triple integrals:

ij(x,y,z)dv

= _”I f (X(U’V’ W)1 y(U,V, W)1 Z(U’V1 W)) 25;(’3/’\2; du dvdw
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Example 4

“*Use Formula 13 to derive the formula for triple
Integration in spherical coordinates.

*+SOLUTION
The change of variables is given by:
X = pSsin ¢ cos &
y=pSsin ¢sin 6
Z= pCOS @
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Example 4 SOLUTION

“*\We compute the Jacobian as follows:

(X, Y,12)
o(p,0,9)

singcosd —psingsind pcosg@cosd
=| singsin@ psingcosd pcos¢@sind
COS ¢ 0 —pSing
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Example 4 SOLUTION
==
—psingsingd pcos¢cosd
psingcosd  pcosgsing
singcoséd —psingsing
singsingd  psingcosd

=C0S ¢

— psing

= oS ¢(—p° sin g cos@sin® @ — p sin ¢ cos ¢ cos’ &)
— psing(psin® gcos® @+ psin® @gsin® 6)

= —p°singcos’ g— p°singsin® ¢

=—p°sing
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Example 4 SOLUTION

-0~
“*Since 0 < ¢ < 7, we have sin ¢ >0.
“»* Therefore,

(X, Y,2)
a(p,0,9)

=|-p?sing| = p’sin g
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Example 4 SOLUTION

“*Thus, Formula 13 gives:

”jf(x,y,z)dV

—J'H f (psingcosd, psin@sin @, pcos )
p’singdp dé dg

This is equivalent to Formula 3 in Section12.7.
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