4.3 Free Fall and the Acceleration due to Gravity

After 1 second 9.8 m/s

After 2 seconds

After 3 seconds

29.4 m/s

- An object is in free fall if it is moving under the sole influence of gravity.
- Free-falling objects speed up, or accelerate, as they fall.
- The acceleration of 9.8 m/s² is given its own name and symbol acceleration due to gravity (g).

4.3 Free fall with initial velocity

- The motion of an object in free fall is described by the equations for speed and position with constant acceleration.
- The acceleration (a) is replaced by the acceleration due to gravity (g) and the variable (x) is replaced by (y).

FREE FALL MOTION FORMULAS

(choosing up as positive)

$v = v_0 - gt$	1 0
$\begin{aligned} \mathbf{v} &= \mathbf{v}_0 - \mathbf{g}\mathbf{t} \\ \mathbf{y} &= \mathbf{y}_0 + \mathbf{v}_0 \mathbf{t} \end{aligned}$	$t + \frac{1}{2}gt^2$

v	Speed (m/s)	
v_0	Initial speed (m/s)	
g	9.8 (m/s²)	

y	Height (m)	
y_0	Initial height (m)	
t	Time (s)	

Free Fall Motion Formulas

(choosing up as positive)

$$v = v_0 - gt$$

$$y = y_0^0 + v_0 t + \frac{1}{2}gt^2$$

v	Speed (m/s)
v_0	Initial speed (m/s)
g	9.8 (m/s²)

y	Height (m)	
y_0	Initial height (m)	
t	Time (s)	

4.3 Free fall with initial velocity

- When the initial speed is upward, at first the acceleration due to gravity causes the speed to decrease.
- After reaching the highest point, its speed increases exactly as if it were dropped from the highest point with zero initial speed.

Launched Ball

The speed changes by -9.8 m/s every second.

Time (s)	Velocity (m/s)
0.0	19.60
1.0	9.80
2.0	0.00
3.0	-9.80
4.0	-19.60

4.3 Solving problems with free fall

- Most free-fall problems ask you to find either the height or the speed.
- Height problems often make use of the knowledge that the speed becomes zero at the highest point of an object's motion.
- If a problem asks for the time of flight, remember that an object takes the same time going up as it takes coming down.

Calculating height from the time of falling

A stone is dropped down a well and it takes 1.6 seconds to reach the bottom. How deep is the well? You may assume the initial speed of the stone is zero.

- 1. You are asked for distance.
- 2. You are given an initial speed and time of flight.
- 3. Use $v = v_0$ gt and $y = y_0 + v_0 t \frac{1}{2}$ gt²
- 4. Since y_0 and $v_0 = 0$, the equation reduces to $x = -\frac{1}{2}gt^2$
 - $y = -(0.5) (9.8 \text{ m/s}^2) (1.6\text{s})^2$
 - y = -12.5 m (The negative sign indicates the height is lower than the initial height)

4.3 Air Resistance and Mass

- The acceleration due to gravity does not depend on the mass of the object which is falling.
- Air creates friction that resists the motion of objects moving through it.
- All of the formulas and examples discussed in this section assume a vacuum (no air).

4.3 Terminal Speed

- You may safely assume that a = g = 9.8 m/sec² for speeds up to several meters per second.
- The air resistance from friction increases as a falling object's speed increases.
- Eventually, the rate of acceleration is reduced to zero and the object falls with constant speed.
- The maximum speed at which an object falls when limited by air friction is called the terminal velocity.

Anti-lock Brakes

Connection

- Antilock braking systems (ABS) are standard on most new cars and trucks.
- If brakes are applied too hard or too fast, a rolling wheel *locks up*, which means it stops turning and the car skids.
- With the help of constant computer monitoring, these systems give the driver more control when stopping quickly.