Duy Tân University

Natural Sciences Department

Series

Lecturer: Thân Th Qu nh Dao

Chapter 3: Series

-Let
$$\{a_n\}$$
 be an infinite sequence.
Then, $a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$

Chapter 3: Series

-Let
$$\{a_n\}$$
 be an infinite sequence.
Then, $a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$
Let: $s_1 = a_1$
 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$

$$s_n = a_1 + a_2 + a_3 + \dots + a_n$$

Chapter 3: Series

If the sequence s_n is convergent and $\lim s_n = s$ exists as a real number, then the series is called convergent and we write $\sum_{n=1}^{\infty} a_n = s$

The number s is called the sum of the series.

Otherwise, the series is called divergent.

Are the following series convergent or divergent?

a.
$$\sum_{n=1}^{\infty} n$$

$$c. \sum_{n=1}^{\infty} \left(-1\right)^n$$

Chapter 3: Series

Steps to determine the convergence or divergence of series:

- Determine a_n
- Caculate s_n
- Find lim s_n

Special series:

Chapter 3: Series

2.Some test:

- -The Comparison test.
- The Integral test.
- The Limit Comparison test.
- The Alternating Series test.
- The Ration test.
- The Root test.

a. The Test for Divergence.
- Let
$$\sum_{n=1}^{\infty} a_n$$
 .
If $\lim a_n \neq 0$ or $\lim a_n$ does not exist then the series
 $\sum_{n=1}^{\infty} a_n$ is divergent

b. The Comparison test. - Let $\sum_{n=1}^{\infty} a_n$; $\sum_{n=1}^{\infty} b_n$ are positive series and if $\lim \frac{a_n}{b_n} \in (0; +\infty)$ Then, either both $\sum_{n=1}^{\infty} a_n$; $\sum_{n=1}^{\infty} b_n$ convergent or both divergent.