
PARTIAL DERIVATIVES

14



PARTIAL DERIVATIVES

One of the most important ideas in 

single-variable calculus is:

 As we zoom in toward a point on the graph 

of a differentiable function, the graph becomes 

indistinguishable from its tangent line.

 We can then approximate the function by 

a linear function.
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Here, we develop similar ideas in 

three dimensions. 

 As we zoom in toward a point on a surface that is 

the graph of a differentiable function of two variables, 

the surface looks more and more like a plane 

(its tangent plane).

 We can then approximate the function by 

a linear function of two variables.
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We also extend the idea 

of a differential to functions 

of two or more variables. 



14.4

Tangent Planes and 

Linear Approximations

PARTIAL DERIVATIVES

In this section, we will learn how to:

Approximate functions using 

tangent planes and linear functions.



TANGENT PLANES

Suppose a surface S has equation z = f(x, y), 

where f has continuous first partial derivatives.

Let P(x0, y0, z0) be a point on S.



TANGENT PLANES

As in Section 10.3, let C1 and C2 be the curves 

obtained by intersecting the vertical planes 

y = y0 and x = x0 with the surface S.

 Then, the point P

lies on both C1 and C2. 



TANGENT PLANES

Let T1 and T2 be the tangent lines to 

the curves C1 and C2 at the point P. 



TANGENT PLANE

Then, the tangent plane to the surface S

at the point P is defined to be the plane that 

contains both tangent lines T1 and T2.



TANGENT PLANES

We will see in Section 10.6 that, if C is 

any other curve that lies on the surface S

and passes through P, then its tangent line 

at P also lies in the tangent plane. 



TANGENT PLANES

Therefore, you can think of the tangent plane 

to S at P as consisting of all possible tangent 

lines at P to curves that lie on S and pass 

through P. 

 The tangent plane at P is the plane that 

most closely approximates the surface S

near the point P.



TANGENT PLANES

We know from Equation 7 in Section 12.5 

that any plane passing through the point 

P(x0, y0, z0) has  an equation of the form 

A(x – x0) + B(y – y0) + C(z – z0) = 0



TANGENT PLANES

By dividing that equation by C and letting 

a = –A/C and b = –B/C, we can write it in 

the form 

z – z0 = a(x – x0) + b(y – y0)

Equation 1



TANGENT PLANES

If Equation 1 represents the tangent plane 

at P, then its intersection with the plane y = y0

must be the tangent line T1. 



TANGENT PLANES

Setting y = y0 in Equation 1 

gives:  

z – z0 = a(x – x0) 

y = y0

 We recognize these as the equations 

(in point-slope form) of a line with slope a.



TANGENT PLANES

However, from Section 10.3, we know that 

the slope of the tangent T1 is fx(x0, y0). 

 Therefore, a = fx(x0, y0).
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Similarly, putting x = x0 in Equation 1, 

we get: 

z – z0 = b(y – y0)

This must represent the tangent line T2. 

 Thus, b = fy(x0, y0). 
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Suppose f has continuous partial derivatives. 

An equation of the tangent plane to the 

surface z = f(x, y) at the point P(x0, y0, z0) 

is:

z – z0 = fx(x0, y0)(x – x0) + fy(x0, y0)(y – y0) 

Equation 2



TANGENT PLANES

Find the tangent plane to the elliptic 

paraboloid z = 2x2 + y2 at the point (1, 1, 3).

 Let f(x, y) = 2x2 + y2.

 Then, 

fx(x, y) = 4x fy(x, y) = 2y 

fx(1, 1) = 4       fy(1, 1) = 2  

Example 1
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 So, Equation 2 gives the equation 

of the tangent plane at (1, 1, 3) as: 

z – 3 = 4(x – 1) + 2(y – 1) 

or 

z = 4x + 2y – 3

Example 1



TANGENT PLANES

The figure shows the elliptic paraboloid 

and its tangent plane at (1, 1, 3) that we 

found in Example 1. 



TANGENT PLANES

Here, we zoom in toward the point by 

restricting the domain of the function 

f(x, y) = 2x2 + y2. 
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Notice that, the more we zoom in, 

 The flatter the graph appears.

 The more it resembles its tangent plane. 



TANGENT PLANES

Here, we corroborate that impression by 

zooming in toward the point (1, 1) on a 

contour map of the function f(x, y) = 2x2 + y2.



TANGENT PLANES

Notice that, the more we zoom in, the more 

the level curves look like equally spaced 

parallel lines—characteristic of a plane.



LINEAR APPROXIMATIONS

In Example 1, we found that an equation of 

the tangent plane to the graph of the function 

f(x, y) = 2x2 + y2 at  the point (1, 1, 3) is: 

z = 4x + 2y – 3



LINEAR APPROXIMATIONS

Thus, in view of the visual evidence in 

the previous two figures, the linear function 

of two variables

L(x, y) = 4x + 2y – 3

is a good approximation to f(x, y) 

when (x, y) is near (1, 1).



LINEARIZATION & LINEAR APPROXIMATION

The function L is called the linearization of f 

at (1, 1).

The approximation 

f(x, y) ≈ 4x + 2y – 3 

is called the linear approximation or tangent 

plane approximation of f at (1, 1). 


