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LINE INTEGRALS

“*We start with a plane curve C given by the
parametric equations
x=x(t) y=y{t) a<st<b
“*Equivalently, C can be given by the vector
equation r(t) = x(t) 1 + y(t) J.
“*We assume that C Is a smooth curve.

This means that r’ is continuous and r’(t) # 0.
See Section 10.7
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LINE INTEGRALS

“*Let’s divide the parameter interval [a, b] into n
subintervals [t; ;, t.] of equal width.

“*We let x; = x(t,) and y; = y(t.).




LINE INTEGRALS

“*Then, the corresponding points P;(x;, y;) divide
C into n subarcs with lengths As,, As,, ..., AS

“»*See Figure 1.

nl

E T ‘:l:.
i-1r )

a

FIGURE |
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LINE INTEGRALS

-0~
“*We choose any point P;"(x.”, y;") in the ith
subarc.

This corresponds to a vA
point ™ in [t_,, t].

a N h

FIGURE |
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LINE INTEGRALS

“* Now, If f Is any function of two variables
whose domain includes the curve C, we:
1. Evaluate f at the point (x;, y;").
2. Multiply by the length As; of the subarc.
3. Form the sum

> f (xi*, yi*)Asi
which IS simila'Flto a Riemann sum.

“* Then, we take the limit of these sums and
make the following definition by analogy with
a single integral.
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Definition 2

If f I1s defined on a smooth curve C given by
Equations 1, the line integral of f along C is:

jcf(x,y)ds: lim Zn:f(xi*,yi*)Asi

max As; —0

If this limit exists.




LINE INTEGRALS

“*In Section 9.2, we found that the length of C is:

R

A similar type of argument can be used to show that,
If fIs a continuous function, then the limit in
Definition 2 always exists.




Formula 3

**Then, this formula can be used to evaluate the
line integral.

IC f(x,y)ds

:jb f(x(1), y(t))\l(%)z +(%)2dt




LINE INTEGRALS

“»*The value of the line integral does not depend
on the parametrization of the curve—provided
the curve is traversed exactly once as t increases
from a to b.

“*1f s(t) is the length of C between r(a) and r(t),
then
ds (dsz (dyjz
R - 4+ | —=
dt V\dt dt
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LINE INTEGRALS

S0, the way to remember Formula 3 Is to
express everything in terms of the parametert :

Use the parametric equations to express x and y in
terms of t and write ds as:

2 2
S BEAL
dt dt




LINE INTEGRALS

“*1In the special case where C Is the line segment
that joins (a, 0) to (b, 0), using x as the
parameter, we can write the parametric
equations of C as:

X

X
0
<

b

IN <
< 11 1l

d




LINE INTEGRALS

s*Formula 3 then becomes

jc f(x, y)ds:j; f (x,0)dx

So, the line integral reduces to an ordinary single
Integral in this case.

“+Just as for an ordinary single integral, we can
Interpret the line integral of a positive function
as an area.
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LINE INTEGRALS

“*In fact, If f(x, y) >0, jc f (X, y)ds represents the
area of one side of the “fence” or “curtain’
shown In Figure 2, whose:

Base is C. N

Height above the point .
(X, y) 1s 1(x, y). LI

NS | 7

X

R

FIGURE 2




Example 1

0:0 Evaluate J‘C (2 n Xzy) dS

where C is the upper half of the unit circle x> +
2=1

“*SOLUTION

To use Formula 3, we first need parametric
equations to represent C.

e 132p1s




Example 1 SOLUTION
-0~
“*Recall that the unit circle can be parametrized
by means of the equations
X=cost y=sint
“»Also, the upper half of the circle is described by

the parameter interval
OStS;Z' X +yr=1

(y=0)

dah

X

FIGURE 3




Example 1 SOLUTION

“+S0, Formula 3 gives:

» . dx\* (dy)
jc(2+x2y)ds:jO (2+cosztsmt)\l(aj +(E) dt

= j:(2+c:os2 tsint)\/sin2 t +cos’t dt

= j:(2+cos2 tsint)dt

I K4
2t—COS t
3

| 10
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PIECEWISE-SMOOTH CURVE

“*Now, let C be a piecewise-smooth curve.

That is, C i1s a union of a finite number of smooth
curves C,, C,, ..., C,, where the initial point of C,_,
IS the terminal point of C..

FIGURE 4
A piecewise-smooth curve
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LINE INTEGRALS

“*Then, we define the integral of f along C as the
sum of the integrals of f along each of the
smooth pieces of C:

Lf(x,y)ds
=] f(x,y)ds+jc f(x,y)ds+...+L f(x,y)ds




Example 2

s»Evaluate

jc 2xds

where C consists of the arc C, of the parabolay
= x? from (0, 0) to (1, 1) followed by the vertical
line segment C, from (1, 1) to (1, 2).




Example 2 SOLUTION

==
“*The curve Is shown in Figure 5.

“*C, Is the graph of a function of x.

So, we can choose X as the -
parameter.

Then, the equations for C,
become:
X=X y=x* 0<x<I

=Y

(0,0)

FIGURE 5
C=C, UG,
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Example 2 SOLUTION

»* Therefore,
2 2
j 2xds:f12x (%) +(ﬂj dx
G 0 \l dx dx
_ jjzx\/1+ Ax? dx
=%-§(1+4x2)3’2}

55 —1
6

e 122
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Example 2 SOLUTION

“*0On C,, we choose y as the parameter.
So, the equations of C, are

x=1 y=1 1<y<2 VA
and
2xds
C,
2 2
:j22(1) (%j +(ﬂj dy (0.0) X
' dy dy
7 FIGURE 5
:.[1 2dy:2 C=C UG,

M




Example 2 SOLUTION

**Thus,
j2xds:j 2xds+| 2xds
C C, C,

55 —1
= +2

0




LINE INTEGRALS

“*Any physical interpretation of a line integral

IC f(xy)ds

depends on the physical interpretation of the
function f.

Suppose that p(x, y) represents the linear density at a
point (x, y) of a thin wire shaped like a curve C.




Example 3

A wire takes the shape of the semicircle x? + y?
=1,y >0, and is thicker near its base than near
the top.

Find the center of mass of the wire if the linear

density at any point Is proportional to its distance
from the liney = 1.




Example 3 SOLUTION
==
“*As In Example 1, we use the parametrization
X = COoS t y=sint 0<t<~r
and find that ds = dt.




Example 3 SOLUTION

-0~
“*The linear density Is

pX, y) =k(1-y)
where K IS a constant.

S0, the mass of the wire Is:
m :J'Ck(l— y)ds =j0”k(1—sint) dt

=k[t+cost],
=k(7—-2)
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Example 3 SOLUTION

“*From Equations 4, we have:

_ 1 1
V=—[ yp(xy)ds=-———| yk{-y)ds

1 : r
= E[—cost —st+2sin2t]

47
- 2(n-2)

s 13.2p29




Example 3 SOLUTION

v
“*By symmetry, we see that x =0.
**S0, the center of mass Is:

A—r1
(O, 2(r— 2)] ~ (0, 0.38)

VA

center of
1 mass

“*See Figure 6. (7\

1 0 l

FIGURE 6




LINE INTEGRALS

“*Two other line integrals are obtained by
replacing As;, in Definition 2, by either:
AX; = X — Xi_4
AYi =Yi—Yia




LINE INTEGRALS

“*They are called the line integrals of f along C
with respect to x and y:

max Ax; =0

jcf(x,y)dx: lim Zn:f(xi*,yi*)Axi

jcf(x,y)dy: lim Zn:f(xi*,yi*)Ayi

max Ay ; —0 |




ARC LENGTH

“*When we want to distinguish the original line
Integral L f (x,y)ds from those in Equations 5
and 6, we call it the line integral with respect

to arc length.




TERMS OF ¢

“*The following formulas say that line integrals
with respect to x and y can also be evaluated by
expressing everything in terms of t:

X = X(1)

y =y(t)
dx = x’(t) dt
dy = y’(t) dt




Formulas 7

[ fxy)ax=[f(x(t),y(t)x'(t)dt

[ fy)dy=["f(x(t), y(t) y'(t)ct




ABBREVIATING

“* 1t frequently happens that line integrals with
respect to x and y occur together.

When this happens, It's customary to abbreviate by
writing

_[C D (X, y)dx+_[CQ(X,Y)dy
::CP(X, y)dx+Q(x,y)dy




LINE INTEGRALS

“*When we are setting up a line integral,
sometimes, the most difficult thing is to think of
a parametric representation for a curve whose
geometric description Is given.

In particular, we often need to parametrize a line
segment.




VECTOR REPRESENTATION

S0, It's useful to remember that a vector
representation of the line segment that starts at
r, and ends at r, is given by:

r)=(1L-tYro+tr,;, 0<t<1

See Equation 4 in Section 10.5




Example 4

<»Evaluate j y“dx+xdy where (a) C = C, is the
line segment from (-5, 3) to (0, 2) (b) C C,Is
the arc of the parabola x = 4 — y? from (-5, 3) to
(0, 2).

“*See Figure 7. (0.2)

(—5,—3)

FIGURE 7




Example 4(a) SOLUTION

A parametric representation for the line segment
IS:
X=5t—-5 y=5bt—-3 0<t<1

Use Equation 8 with ry = <=5, 3> and r, = <0, 2>.




Example 4(a) SOLUTION

“*Then, dx =5dt, dy =5 dt, and Formulas 7 give:
_y2dx+xdy = [ (5t-3)’ (5dt)+(5t-5)(5dt)

=5| (25t" - 25t +4)dt

- 3 2 T
25t 28" , ] __5
3 2

| 10

o
0

=D
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Example 4(b) SOLUTION

-0~
“+The parabola is given as a function of y.
%S0, let’s take y as the parameter and write C, as:




Example 4(b) SOLUTION

“*Then, dx = -2y dy and, by Formulas 7, we have:

ch yzdx+xdy:f2 y? (=2y)dy+(4—y*)dy

_[ 2y’ y+4dy

3 2

LYYy =408

- -3




ARC LENGTH

“*Notice that we got different answers In parts a

and b of Example 4 although the two curves had
the same endpoints.

Thus, in general, the value of a line integral depends

not just on the endpoints of the curve but also on the
path.

However, see Section 13.3 for conditions under
which it is independent of the path.
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ARC LENGTH

“*Notice also that the answers in Example 4
depend on the direction, or orientation, of the
curve.

If —C, denotes the line segment from (0, 2) to (-5,
—3), you can verify, using the parametrization

x=-5t  y=2-5t 0<t<l

that .
E —_
_Cly dx +xdy = ”

s 13.2pa5




CURVE ORIENTATION

“*In general, a given parametrization

X=X(t),y=y®),ast<b

determines an orientation of a curve C, with the
positive direction corresponding to increasing
values of the parameter t.




CURVE ORIENTATION

“*For instance, See Figure 8

B
The initial point A - ;
corresponds to the p
parameter value.
The terminal point B \
corresponds tot = b. a bt
B
f
A
FIGURE 8

M




CURVE ORIENTATION

“*|f —C denotes the curve consisting of the same
points as C but with the opposite orientation
(from initial point B to terminal point A In
Figure 8), we have:

I_C f(x, y)dxz—jC f (x,y)dx
I_C f(x,y)dy =—L f(x,y)dy

13.2 P48




CURVE ORIENTATION

“*However, if we integrate with respect to arc
length, the value of the line integral does not
change when we reverse the orientation of the
curve:

j_c f(x,y)ds =L f(x,y)ds

This Is because As; is always positive, whereas AX;
and Ay; change sign when we reverse the orientation
of C.

s 13.2pa9




LINE INTEGRALS IN SPACE

“*\We now suppose that C Is a smooth space curve
given by the parametric equations

x=x(t) y=y{t) z=z(t) a<t<b
or by a vector equation

rt) =x@® 1+y() ) +z(H k

e 13250




LINE INTEGRALS IN SPACE
==
“*Suppose f Is a function of three variables that Is

continuous on some region containing C.
Then, we define the line integral of f along C (with

respect to arc length) in a manner similar to that for
plane curves:

Lf(x,y,z)ds= lim Zl:f(xi*,yi*,zi*)Asi

max As; =0




LINE INTEGRALS IN SPACE

“*We evaluate It using a formula similar to
Formula 3:

L f(x,y,2)ds

M (x(. y(t),z(t))\l(dsz +(ﬂj2 +(dzj2dt

dt dt dt




LINE INTEGRALS IN SPACE

“*Observe that the integrals in both Formulas 3
and 9 can be written in the more compact vector
notation

[ (r)l et




LINE INTEGRALS IN SPACE

“*For the special case f(x, y, z) = 1, we get:

[Las=["Ir(tldt=L

where L is the length of the curve C.

See Formula 3 in Section 10.8




LINE INTEGRALS IN SPACE

“*Line integrals along C with respect to X, y, and z
can also be defined.

For example,

jcf(x,y,z)dz: lim an:f(xi*,yi*,zi*)Azi

max Az; -0

= [T £ (x(1), y(t),2(1)) 2'(t)




LINE INTEGRALS IN SPACE

“*Thus, as with line integrals in the plane, we
evaluate integrals of the form

L P(X,y,2)dx+Q(X,Y,2)dy+R(X,Y,z)dz

by expressing everything (x, y, z, dx, dy, dz) in
terms of the parameter t.




Example 5

*»»Evaluate IC ysin z ds

where C Is the circular helix
given by the equations
X =C0St -
y=sint
Z=1
0<t<2rx

“»*See Figure 9.

FIGURE 9




Example 5 SOLUTION

“*Formula 9 gives:
L ysin zds

— IOZ”(sin t)sin t\l (%)2 + (%)2 +(%Tdt

27 _
— jo sint/sint + cos?t +1 dt

= \/fjom%(l—cos 2t) dt

— ﬁ[t —2sin 2t]§7Z —2r

2
e 13288




Example 6

s»Evaluate

Joydx +zdy +xdz
where C consists of the line segment C, from (2,
0, 0) to (3, 4, 5), followed by the vertical line
segment C, from (3, 4, 5) to (3, 4, 0).




Example 6 SOLUTION

“*The curve C i1s shown in Figure 10.
Using Equation 8, we write C, as:

r(t) = (1 = 1)<2, 0, 0> + t <3, 4, 5>
= (2 +1, 4t, 5t

FIGURE 10




Example 6 SOLUTION

Alternatively, in parametric form, we write C, as:

X=2+ { ZA
y =4t
7 = b5t (3.4.5)
0<t<1 . /
1 "CE
(2,0,0) y
(3.4,0)
X
FIGURE 10




Example 6 SOLUTION

Thus,

jc ydx+zdy+ xdz

= [ (4t)dt+(5t)4dt+(2+1)50t

= [ (10+29t)dt

2

1
=10t +29 t—} =245
2 0

M




Example 6 SOLUTION

“*Likewise, C, can be written in the form

r)=(1-1)<3,4,5> +1t<3,4,0>
=<3,4,5-50

or
x=3 y=4 z=5-5t 0<Zt<l1




Example 6 SOLUTION

<*Then, dx =0 =dy.
L yadx+zdy+xdz = J‘013(—5)dt —_15

S0,
Adding the values of these integrals, we obtain:

L ydx+zdy+xdz=245-15=9.5




LINE INTEGRALS OF VECTOR FIELDS

“*Recall from Section 7.5 that the work done by a
variable force f(x) iIn moving a particle from a to
b along the x-axis Is:

W:j:f(x)dx




LINE INTEGRALS OF VECTOR FIELDS

“*In Section 10.3, we found that the work done by
a constant force F in moving an object from a
point P to another point in space Is:

W=F D

where D = PQ is the displacement vector.




LINE INTEGRALS OF VECTOR FIELDS

“*Now, suppose that

F=Pi+QJ+RK

IS a continuous force field on R?, such as:
The gravitational field of Example 4 in Section 13.1
The electric force field of Example 5 in Section 13.1




LINE INTEGRALS OF VECTOR FIELDS

A force field on R*could be regarded as a
special case where R =0 and P and Q depend
only on x andy.

We wish to compute the work done by this force In
moving a particle along a smooth curve C.

13.2 P68




LINE INTEGRALS OF VECTOR FIELDS

“*We divide C into subarcs P;_,P; with lengths As;
by dividing the parameter interval [a, b] into
subintervals of equal width.




LINE INTEGRALS OF VECTOR FIELDS

v
“*Figure 1 shows the two-dimensional case.
*+* The second shows the three-dimensional one.

ETI o \:!:. -
VA P Pi(xi,yi) “A
i—1 *

/

FIGURE | FIGURE 11
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LINE INTEGRALS OF VECTOR FIELDS

“*Choose a point P;"(x;", yi", ) on the ith subarc
corresponding to the parameter value t.”.

FIGURE 11
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LINE INTEGRALS OF VECTOR FIELDS

“*If As; I1s small, then as the particle moves from
P._, to P, along the curve, it proceeds
approxmately In the direction of T(t.), the unit
tangent vector at P;".

FIGURE 11 I




LINE INTEGRALS OF VECTOR FIELDS

“*Thus, the work done by the force F in moving
the particle P;_, from to P, Is approximately

FOGT Y Z0) - [AS T()]
=[F™ Y ) - T(4)] As,




VECTOR FIELDS

“+*The total work done in moving the particle
along C Is approximately

-an[l:(xi*’ Vi ) T Y Zi*):l As,

where T(X, Y, z) Is the unit tangent vector at the
point (X, Yy, z) on C.

“*Intuitively, we see that these approximations
ought to become better as n becomes larger.

s 13.2p7a




VECTOR FIELDS
-

“*Thus, we define the work W done by the force
field F as the limit of the Riemann sums In

Formula 11, namely,

W :LF(X, y,2)-T(X,Y,2)ds =ICF-Tds

This says that work is the line integral with respect
to arc length of the tangential component of the

force.

13275




VECTOR FIELDS

“*1f the curve C is given by the vector equation

rt) =x@® 1+y(t) ) + () k

then

T(0) = r'@/ri)




VECTOR FIELDS

“*S0, using Equation 9, we can rewrite Equation
12 in the form

W= F(r(t)) () o) d

r(t)]_
:L F(r(t))-r'(t)dt




VECTOR FIELDS

“*This integral is often abbreviated as
and occurs In other areas of physics as well.

Thus, we make the following definition for
the line integral of any continuous vector field.




Definition 13

et F be a continuous vector field defined on a
smooth curve C given by a vector function r(t),
a <t<Db. Then, the line integral of F along C Is:

J.Fedr=["F(r()-r'(tydt=[ F-Tds




VECTOR FIELDS

-0~
“*When using Definition 13, remember F(r(t)) Is
just an abbreviation for
F(x(t), y(t), z(1))

So, we evaluate F(r(t)) simply by putting
X=X(t), y =y(t), and z = z(t)
In the expression for F(Xx, Y, 2).

Notice also that we can formally write dr = r’(t) dt.
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Example 7

“*Find the work done by the force field

F(X, y) =X°1—XY ]

In moving a particle along the quarter-circle

r(t)=costi+sintj, 0<t< 2




Example 7 SOLUTION

“*Since x =cos tand y =sin t, we have

F(r(t)) = cos?ti—costsint]
and

r'(t) =—sinti+cost |




Example 7 SOLUTION

*»* Therefore, the work done Is:

[LF-dr=[""F(r(t) -r(tat

wl2 ]
:jo (—20032t5|nt)dt

3 —17/2




VECTOR FIELDS

“*Figure 12 shows the force field and the curve In
Example 7.
The work done is negative | [~ NN

because the field impedes
movement along the curve.

S
0 X

FIGURE 12
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Note

< Although |.F -dr =|.F - T ds and integrals
with respect to arc length are unchanged when
orientation is reversed, it is still true that:

I_CF-dr:—jCF-dr

This i1s because the unit tangent vector T is replaced
by its negative when C is replaced by —C.




Example 8

“*Evaluate
JoF-dr
where:
F(X,y,Z)=xy1+yz]+zxK
C is the twisted cubic given by

13.2 P86




Example 8 SOLUTION

«*We have:
r) =ti+t?j+t3k
rg)=i+2tj+3t°k
F(r)=ti+tj+t*k

<&

L/

*Thus,

[ F-dr=[F(rt)-r)a

t* 5t’ [ 27
t=—+
4 7

L)

1
= |, (£ +5t°)d

10
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VECTOR FIELDS

“*Figure 13 shows the twisted cubic in Example 8
and some typical vectors acting at three points
on C. 2

b
b
ot

FIGURE 13
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VECTOR & SCALAR FIELDS

“*Finally, we note the connection between line
Integrals of vector fields and line integrals of
scalar fields.
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VECTOR & SCALAR FIELDS

“*Suppose the vector field F on R3 Is given in
component form by:

F=PI1+QJ+RKk

We use Definition 13 to compute its line integral
along C, as follows.




VECTOR & SCALAR FIELDS

ICF-dr

= ["F(r(t)r'(t)dt
Pi+QJ+RK)-(x'(t)i+y'(t)j+z'(t)k)dt
P(x(t),y(t),z(D)x'(t)

:jb +Q(x(1),y(t),z(t))y'(t)
HR(X(1), y(t), z(1))z'(t)_

|l
Y
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VECTOR & SCALAR FIELDS

“*However, that last integral is precisely the line
Integral in Formula 10.

“*Hence, we have:
jCF-drszde+Qdy+Rdz
where F=PI1+QJ+RK




VECTOR & SCALAR FIELDS
==
“*For example, the integral
Joydx +zdy +xdz
In Example 6 could be expressed as
JoF-dr
where

F(X,y,2)=yi1+z]+xKk




