
LINE INTEGRALS

LINE INTEGRALS



P213.2

LINE INTEGRALS

We start with a plane curve C given by the 

parametric equations

x = x(t)     y = y(t)     a ≤ t ≤ b

Equivalently, C can be given by the vector 

equation r(t) = x(t) i + y(t) j.

We assume that C is a smooth curve.

 This means that r’ is continuous and r’(t) ≠ 0.

 See Section 10.7



P313.2

LINE INTEGRALS

Let’s divide the parameter interval [a, b] into n 

subintervals [ti-1, ti] of equal width.

We let xi = x(ti) and yi = y(ti).



P413.2

LINE INTEGRALS

Then, the corresponding points Pi(xi, yi) divide 

C into n subarcs with lengths ∆s1, ∆s2, …, ∆sn.

See Figure 1.



P513.2

LINE INTEGRALS

We choose any point Pi
*(xi

*, yi
*) in the ith 

subarc.

 This corresponds to a 

point ti
* in [ti–1, ti].



P613.2

LINE INTEGRALS

 Now, if f is any function of two variables 

whose domain includes the curve C, we:

1. Evaluate f at the point (xi
*, yi

*).

2. Multiply by the length ∆si of the subarc.

3. Form the sum 

which is similar to a Riemann sum.

 Then, we take the limit of these sums and 

make the following definition by analogy with 

a single integral.  

 * *
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,
n

i i i

i

f x y s






P713.2

If f is defined on a smooth curve C given by 

Equations 1, the line integral of f along C is:

if this limit exists.

Definition 2

   * *

max 0
1

, lim ,
i

n

i i i
C s

i

f x y ds f x y s
 



 



P813.2

LINE INTEGRALS

In Section 9.2, we found that the length of C is:

 A similar type of argument can be used to show that, 

if f is a continuous function, then the limit in 

Definition 2 always exists.

2 2
b

a

dx dy
L dt

dt dt

   
    

   




P913.2

Formula 3

Then, this formula can be used to evaluate the 

line integral.
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P1013.2

LINE INTEGRALS

The value of the line integral does not depend 

on the parametrization of the curve—provided 

the curve is traversed exactly once as t increases 

from a to b.  

If s(t) is the length of C between r(a) and r(t), 

then
2 2

ds dx dy

dt dt dt

   
    

   



P1113.2

LINE INTEGRALS

So, the way to remember Formula 3 is to 

express everything in terms of the parameter t :

 Use the parametric equations to express x and y in 

terms of t and write ds as: 

2 2
dx dy

ds dt
dt dt

   
    

   



P1213.2

LINE INTEGRALS

In the special case where C is the line segment 

that joins (a, 0) to (b, 0), using x as the 

parameter, we can write the parametric 

equations of C as: 

x = x

y = 0

a ≤ x ≤ b



P1313.2

LINE INTEGRALS

Formula 3 then becomes

 So, the line integral reduces to an ordinary single 

integral in this case.

Just as for an ordinary single integral, we can 

interpret the line integral of a positive function

as an area.

   , ,0
b

C a
f x y ds f x dx 
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LINE INTEGRALS

In fact, if f(x, y) ≥ 0, represents the 

area of one side of the ―fence‖ or ―curtain‖

shown in Figure 2, whose: 

 Base is C.

 Height above the point 

(x, y) is f(x, y).

 ,
C

f x y ds
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Example 1

Evaluate 

where C is the upper half of the unit circle x2 + 

y2 = 1

SOLUTION

 To use Formula 3, we first need parametric 

equations to represent C.

 22
C

x y ds
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Example 1 SOLUTION

Recall that the unit circle can be parametrized 

by means of the equations 

x = cos t y = sin t

Also, the upper half of the circle is described by 

the parameter interval 

0 ≤ t ≤ p
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Example 1 SOLUTION

So, Formula 3 gives:

   

 

 

2 2

2 2

0

2 2 2

0

2

0

3

2
3

0

2 2 cos sin

2 cos sin sin cos

2 cos sin

cos
2 2

3

C

dx dy
x y ds t t dt

dt dt

t t t t dt

t t dt

t
t

p

p

p

p

p

   
      

   

  

 

 
    
 

 







P1813.2

PIECEWISE-SMOOTH CURVE

Now, let C be a piecewise-smooth curve.

 That is, C is a union of a finite number of smooth 

curves C1, C2, …, Cn, where the initial point of Ci+1

is the terminal point of Ci.  



P1913.2

LINE INTEGRALS

Then, we define the integral of f along C as the 

sum of the integrals of f along each of the 

smooth pieces of C: 
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C
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Example 2

Evaluate  

where C consists of the arc C1 of the parabola y

= x2 from (0, 0) to (1, 1) followed by the vertical 

line segment C2 from (1, 1) to (1, 2).  

2
C

x ds
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Example 2 SOLUTION

The curve is shown in Figure 5.

C1 is the graph of a function of x.

 So, we can choose x as the 

parameter.

 Then, the equations for C1

become: 

x = x y = x2 0 ≤ x ≤ 1



P2213.2

Example 2 SOLUTION

Therefore,
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P2313.2

Example 2 SOLUTION

On C2, we choose y as the parameter.

 So, the equations of C2 are

x = 1     y = 1     1 ≤ y ≤ 2

and 
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Example 2 SOLUTION

Thus,

1 2
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P2513.2

LINE INTEGRALS

Any physical interpretation of a line integral 

depends on the physical interpretation of the 

function f.

 Suppose that r(x, y) represents the linear density at a 

point (x, y) of a thin wire shaped like a curve C.

 ,
C

f x y ds
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Example 3

A wire takes the shape of the semicircle x2 + y2

= 1, y ≥ 0, and is thicker near its base than near 

the top.

 Find the center of mass of the wire if the linear 

density at any point is proportional to its distance 

from the line y = 1.  
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Example 3 SOLUTION

As in Example 1, we use the parametrization

x = cos t y = sin t      0 ≤ t ≤ p
and find that ds = dt. 
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Example 3 SOLUTION

The linear density is 

r(x, y) = k(1 – y)

where k is a constant.

So, the mass of the wire is:
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Example 3 SOLUTION

From Equations 4, we have:

 
 

 

 

 

2

0

1 1
2 4 0

1 1
, (1 )

2

1
sin sin

2

1
cos sin 2

2

4

2 2

C C
y y x y ds y k y ds

m k

t t dt

t t t

p

p

r
p

p

p

p

p

  


 


   







 





P3013.2

Example 3 SOLUTION

By symmetry, we see that          .

So, the center of mass is:  

See Figure 6.

0x 

 
 

4
0,  0,  0.38

2 2

p

p

 
 

 



P3113.2

LINE INTEGRALS

Two other line integrals are obtained by 

replacing ∆si, in Definition 2, by either:

 ∆xi = xi – xi–1

 ∆yi = yi – yi–1



P3213.2

LINE INTEGRALS

They are called the line integrals of f along C

with respect to x and y:

   

   

* *

max 0
1

* *

max 0
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, lim ,
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P3313.2

ARC LENGTH

When we want to distinguish the original line 

integral                      from those in Equations 5 

and 6, we call it the line integral with respect 

to arc length. 

 ,
C

f x y ds
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TERMS OF t

The following formulas say that line integrals 

with respect to x and y can also be evaluated by 

expressing everything in terms of t:

x = x(t)

y = y(t)

dx = x’(t) dt

dy = y’(t) dt



P3513.2

Formulas 7

        

        

, , '

, , '

b

C a

b

C a

f x y dx f x t y t x t dt

f x y dy f x t y t y t dt





 

 



P3613.2

ABBREVIATING

It frequently happens that line integrals with 

respect to x and y occur together.

 When this happens, it’s customary to abbreviate by 

writing

   

   

, ,

, ,

C C

C

P x y dx Q x y dy

P x y dx Q x y dy



 

 





P3713.2

LINE INTEGRALS

When we are setting up a line integral, 

sometimes, the most difficult thing is to think of 

a parametric representation for a curve whose 

geometric description is given.

 In particular, we often need to parametrize a line 

segment.
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VECTOR REPRESENTATION

So, it’s useful to remember that a vector 

representation of the line segment that starts at 

r0 and ends at r1 is given by:

r(t) = (1 – t)r0 + t r1 0 ≤ t ≤ 1

 See Equation 4 in Section 10.5



P3913.2

Example 4

Evaluate                        where (a) C = C1 is the 

line segment from (–5, 3) to (0, 2) (b)  C = C2 is 

the arc of the parabola x = 4 – y2 from (–5, 3) to 

(0, 2). 

See Figure 7.

2

C
y dx x dy
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Example 4(a) SOLUTION

A parametric representation for the line segment 

is:

x = 5t – 5    y = 5t – 3    0 ≤ t ≤ 1

 Use Equation 8 with r0 = <–5, 3> and r1 = <0, 2>.
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Example 4(a) SOLUTION

Then, dx = 5 dt, dy = 5 dt, and Formulas 7 give:

      

 

1

1 22

0

1
2

0

13 2

0

5 3 5 5 5 5

5 25 25 4

25 25 5
5 4

3 2 6

C
y dx x dy t dt t dt

t t dt

t t
t

    

  

 
     

 

 





P4213.2

Example 4(b) SOLUTION

The parabola is given as a function of y.

So, let’s take y as the parameter and write C2 as:

x = 4 – y2 y = y    –3 ≤ y ≤ 2



P4313.2

Example 4(b) SOLUTION

Then, dx = –2y dy and, by Formulas 7, we have:
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P4413.2

ARC LENGTH

Notice that we got different answers in parts a 

and b of Example 4 although the two curves had 

the same endpoints. 

 Thus, in general, the value of a line integral depends 

not just on the endpoints of the curve but also on the 

path. 

 However, see Section 13.3 for conditions under 

which it is independent of the path.



P4513.2

ARC LENGTH

Notice also that the answers in Example 4 

depend on the direction, or orientation, of the 

curve. 

 If –C1 denotes the line segment from (0, 2) to (–5, 

–3), you can verify, using the parametrization 

x = –5t y = 2 – 5t 0 ≤ t ≤ 1

that

1

2 5

6C
y dx x dy


 



P4613.2

CURVE ORIENTATION

In general, a given parametrization 

x = x(t), y = y(t), a ≤ t ≤ b

determines an orientation of a curve C, with the 

positive direction corresponding to increasing 

values of the parameter t.
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CURVE ORIENTATION

For instance, See Figure 8

 The initial point A

corresponds to the 

parameter value.

 The terminal point B

corresponds to t = b. 



P4813.2

CURVE ORIENTATION

If –C denotes the curve consisting of the same 

points as C but with the opposite orientation 

(from initial point B to terminal point A in 

Figure 8), we have:

   

   

, ,

, ,

C C

C C

f x y dx f x y dx

f x y dy f x y dy





 

 

 

 



P4913.2

CURVE ORIENTATION

However, if we integrate with respect to arc 

length, the value of the line integral does not 

change when we reverse the orientation of the 

curve:

 This is because ∆si is always positive, whereas ∆xi

and ∆yi change sign when we reverse the orientation 

of C. 

   , ,
C C

f x y ds f x y ds
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LINE INTEGRALS IN SPACE

We now suppose that C is a smooth space curve 

given by the parametric equations

x = x(t) y = y(t) z = z(t) a ≤ t ≤ b

or by a vector equation 

r(t) = x(t) i + y(t) j + z(t) k



P5113.2

LINE INTEGRALS IN SPACE

Suppose f is a function of three variables that is 

continuous on some region containing C.

 Then, we define the line integral of f along C (with 

respect to arc length) in a manner similar to that for 

plane curves:

   * * *

max 0
1

, , lim , ,
i

n

i i i i
C s

i

f x y z ds f x y z s
 



 



P5213.2

LINE INTEGRALS IN SPACE

We evaluate it using a formula similar to 

Formula 3:

 

      
2 2 2
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dx dy dz
f x t y t z t dt
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P5313.2

LINE INTEGRALS IN SPACE

Observe that the integrals in both Formulas 3 

and 9 can be written in the more compact vector 

notation 

    '
b

a
f t t dt r r



P5413.2

LINE INTEGRALS IN SPACE

For the special case f(x, y, z) = 1, we get: 

where L is the length of the curve C. 

 See Formula 3 in Section 10.8

 '
b

C a
ds t dt L   r
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LINE INTEGRALS IN SPACE

Line integrals along C with respect to x, y, and z

can also be defined. 

 For example, 

   

        

* * *

max 0
1

, , lim , ,

, , '

i

n

i i i i
C z

i

b

a

f x y z dz f x y z z

f x t y t z t z t dt

 


 









P5613.2

LINE INTEGRALS IN SPACE

Thus, as with line integrals in the plane, we 

evaluate integrals of the form

by expressing everything (x, y, z, dx, dy, dz) in 

terms of the parameter t.

     , , , , , ,
C

P x y z dx Q x y z dy R x y z dz 



P5713.2

Example 5

Evaluate                     

where C is the circular helix 

given by the equations 

x = cos t

y = sin t 

z = t 

0 ≤ t ≤ 2p

See Figure 9.

sin
C

y z ds



P5813.2

Example 5 SOLUTION

Formula 9 gives:
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P5913.2

Example 6

Evaluate 

∫C y dx + z dy + x dz

where C consists of the line segment C1 from (2, 

0, 0) to (3, 4, 5), followed by the vertical line 

segment C2 from (3, 4, 5) to (3, 4, 0).



P6013.2

Example 6 SOLUTION

The curve C is shown in Figure 10.

 Using Equation 8, we write C1 as: 

r(t) = (1 – t)<2, 0, 0> + t <3, 4, 5>
= <2 + t, 4t, 5t>



P6113.2

Example 6 SOLUTION

 Alternatively, in parametric form, we write C1 as: 

x = 2 + t

y = 4t

z = 5t

0 ≤ t ≤ 1



P6213.2

Example 6 SOLUTION

 Thus,
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P6313.2

Example 6 SOLUTION

Likewise, C2 can be written in the form

r(t) = (1 – t) <3, 4, 5> + t <3, 4, 0>
= <3, 4, 5 – 5t>

or       

x = 3       y = 4    z = 5 – 5t 0 ≤ t ≤ 1



P6413.2

Example 6 SOLUTION

Then, dx = 0 = dy.

So,

 Adding the values of these integrals, we obtain:
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P6513.2

LINE INTEGRALS OF VECTOR FIELDS

Recall from Section 7.5 that the work done by a 

variable force f(x) in moving a particle from a to 

b along the x-axis is:

 
b

a
W f x dx 
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LINE INTEGRALS OF VECTOR FIELDS

In Section 10.3, we found that the work done by 

a constant force F in moving an object from a 

point P to another point in space is: 

W = F . D 

where D =         is the displacement vector.PQ




P6713.2

LINE INTEGRALS OF VECTOR FIELDS

Now, suppose that 

F =  P i + Q j + R k

is a continuous force field on     , such as: 

 The gravitational field of Example 4 in Section 13.1

 The electric force field of Example 5 in Section 13.1

3



P6813.2

LINE INTEGRALS OF VECTOR FIELDS

A force field on      could be regarded as a 

special case where R = 0 and P and Q depend 

only on x and y. 

 We wish to compute the work done by this force in 

moving a particle along a smooth curve C.

3



P6913.2

LINE INTEGRALS OF VECTOR FIELDS

We divide C into subarcs Pi–1Pi with lengths ∆si

by dividing the parameter interval [a, b] into 

subintervals of equal width.



P7013.2

LINE INTEGRALS OF VECTOR FIELDS

Figure 1 shows the two-dimensional case. 

The second shows the three-dimensional one. 



P7113.2

LINE INTEGRALS OF VECTOR FIELDS

Choose a point Pi
*(xi

*, yi
*, zi

*) on the ith subarc 

corresponding to the parameter value ti
*.



P7213.2

LINE INTEGRALS OF VECTOR FIELDS

If ∆si is small, then as the particle moves from 

Pi–1 to Pi along the curve, it proceeds 

approximately in the direction of T(ti
*), the unit 

tangent vector at Pi
*. 
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LINE INTEGRALS OF VECTOR FIELDS

Thus, the work done by the force F in moving 

the particle Pi–1 from to Pi is approximately 

F(xi
*, yi

*, zi
*) . [∆si T(ti

*)] 

= [F(xi
*, yi

*, zi
*) . T(ti

*)] ∆si
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VECTOR FIELDS

The total work done in moving the particle 

along C is approximately

where T(x, y, z) is the unit tangent vector at the 

point (x, y, z) on C.

Intuitively, we see that these approximations 

ought to become better as n becomes larger.

* * * * * *

1

( , , ) ( , , )
n

i i i i i i i

i

x y z x y z s
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VECTOR FIELDS

Thus, we define the work W done by the force 

field F as the limit of the Riemann sums in 

Formula 11, namely,

 This says that work is the line integral with respect 

to arc length of the tangential component of the 

force.

   , , , ,
C C

W x y z x y z ds ds    F T F T
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VECTOR FIELDS

If the curve C is given by the vector equation 

r(t) = x(t) i + y(t) j + z(t) k 

then 

T(t) = r’(t)/|r’(t)|



P7713.2

VECTOR FIELDS

So, using Equation 9, we can rewrite Equation 

12 in the form
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P7813.2

VECTOR FIELDS

This integral is often abbreviated as 

∫C F . dr 

and occurs in other areas of physics as well. 

 Thus, we make the following definition for 

the line integral of any continuous vector field. 



P7913.2

Let F be a continuous vector field defined on a 

smooth curve C given by a vector function r(t), 

a ≤ t ≤ b. Then, the line integral of F along C is: 

Definition 13

    '
b

C a C
d t t dt ds      F r F r r F T
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VECTOR FIELDS

When using Definition 13, remember F(r(t)) is 

just an abbreviation for 

F(x(t), y(t), z(t))

 So, we evaluate F(r(t)) simply by putting 

x = x(t), y = y(t), and z = z(t) 

in the expression for F(x, y, z).

 Notice also that we can formally write dr = r’(t) dt. 
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Example 7

Find the work done by the force field 

F(x, y) = x2 i – xy j

in moving a particle along the quarter-circle

r(t) = cos t i + sin t j,    0 ≤ t ≤ p/2 



P8213.2

Example 7 SOLUTION

Since x = cos t and y = sin t, we have

F(r(t)) = cos2t i – cos t sin t j

and 

r’(t) = –sin t i + cos t j



P8313.2

Example 7 SOLUTION

Therefore, the work done is:
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P8413.2

VECTOR FIELDS

Figure 12 shows the force field and the curve in 

Example 7.

 The work done is negative 

because the field impedes 

movement along the curve.



P8513.2

Note

Although ∫C F . dr = ∫C F
. T ds and integrals 

with respect to arc length are unchanged when 

orientation is reversed, it is still true that:

 This is because the unit tangent vector T is replaced 

by its negative when C is replaced by –C.

C C
d d


    F r F r
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Example 8

Evaluate 

∫C F . dr 

where:

 F(x, y, z) = xy i + yz j + zx k

 C is the twisted cubic given by

x = t y = t2 z = t3 0 ≤ t ≤ 1
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Example 8 SOLUTION

We have: 

r(t) = t i + t2 j + t3 k

r’(t) = i + 2t j + 3t2 k

F(r(t)) = t3 i + t5 j + t4 k

Thus, 
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P8813.2

VECTOR FIELDS

Figure 13 shows the twisted cubic in Example 8 

and some typical vectors acting at three points 

on C. 
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VECTOR & SCALAR FIELDS

Finally, we note the connection between line 

integrals of vector fields and line integrals of 

scalar fields. 



P9013.2

VECTOR & SCALAR FIELDS

Suppose the vector field F on       is given in 

component form by:

F = P i + Q j + R k

 We use Definition 13 to compute its line integral 

along C, as follows.

3



P9113.2

VECTOR & SCALAR FIELDS
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P9213.2

VECTOR & SCALAR FIELDS

However, that last integral is precisely the line 

integral in Formula 10. 

Hence, we have: 

where F = P i + Q j + R k

C C
d P dx Qdy R dz    F r
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VECTOR & SCALAR FIELDS

For example, the integral 

∫C y dx + z dy + x dz

in Example 6 could be expressed as 

∫C F . dr

where 

F(x, y, z) = y i + z j + x k


