Chemistry 102(001) Spring 2015

Instructor: Dr. Upali Siriwardane

e-mail: upali@latech.edu Office: CTH 311 Phone 257-4941

Office Hours: M,W 8:00-9:30 & 11:00-12:30 am; Tu,Th, F 8:00 - 10:00 am. or by appointment.;

Test Dates:

March 30, 2015 (Test 1): Chapter 13 April 22, 2015 (Test 2): Chapter 14 &15 May 81, 2015 (Test 3): Chapter 16 &7 May 20, 2015 (Make-up test) comprehensive: Chapters 13-17

Chapter 13. Chemical Kinetics

13.1 Catching Lizards	563
13.2 The Rate of a Chemical Reaction	564
13.3 The Rate Law: The Effect of Concentration	
on Reaction Rate	569
13.4 The Integrated Rate Law: The Dependence	of
Concentration on Time	573
13.5 The Effect of Temperature on Reaction Rate) 581
13.6 Reaction Mechanisms	588
13.7 Catalysis	593

A Nanoscale View: Elementary Reactions

- Most reactions occur through a series of simple
- steps or elementary reactions.
- **Elementary reactions could be**
- unimolecular rearrangement of a molecule
- **bimolecular** reaction involving the collision of
- two molecules or particles
- termolecular reaction involving the collision of
- three molecules or particles

Elementary Reactions and Mechanism

 $2NO_2(g) + F_2(g) \longrightarrow 2NO_2F(g)$ If the reaction took place in a single step the rate law would be: rate = $k [NO_2]_2 [F_2]$ **Observed:** rate = k_1 [NO₂] [F₂] If the observed rate law is not the same as if the reaction took place in a single step that more than one step must be involved

Elementary Reactions

A possible reaction mechanism might be: Step one $NO_2 + F_2 \longrightarrow NO_2F + F$ (slow) Step two $NO_2 + F \longrightarrow NO_2F$ (fast) Overall $2NO_2 + F_2 \longrightarrow 2NO_2F$

Rate Determining Step slowest step in a multi-step mechanism the step which determines the overall rate of the reaction

rate = $k_1 [NO_2] [F_2]$

Reaction profile of rate determining step

Reaction coordinate

What Potential Energy Curves Show

- **Exothermic Reactions**
- **Endothermic Reactions**
- Activation Energy (E_a) of reactant or the minimum
- energy required to start a reaction
- **Effect of catalysts**
- **Effect of temperature**

 $2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{H}_2\operatorname{O}(g)$

Energy

Examples of reaction profiles

Exothermic reaction

Endothermic reaction

Examples of reaction profiles

High activation energy (kinetic) **Low heat of reaction** (thermodynamic)

Catalysts Lowers E_a

TABLE 13.2 Rate Laws for Elementary Step

Elementary Step	Molecularity	Rate Law
$A \longrightarrow products$	1	Rate = $k [A]$
$A + A \longrightarrow products$	2	Rate = $k [A]^2$
$A + B \longrightarrow products$	2	Rate = $k [A] [B]$
$A + A + A \longrightarrow$ products	3 (rare)	Rate = $k [A]^3$
$A + A + B \longrightarrow products$	3 (rare)	Rate = $k [A]^2 [B]$
$A + A + C \longrightarrow \text{ products}$	3 (rare)	Rate = <i>k</i> [A][B][C]

© 2013 Pearson Education, Inc.

- 1. Given the chemical reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$, and the mechanism:
- $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$; slow step
- $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$; fast step
- a) How many elementary steps are in the mechanism?
- b) Does the elementary steps adds up to overall chemical reaction? (Show your work)
- c) What's is the molecularity of the slowest step?

- 1. Given the chemical reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$, and the mechanism:
- $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$; slow step
- $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g);$ fast step
- d) What is the rate determining step in the mechanism?

e) What is(are) the intermediates in the mechanism?

- 1. Given the chemical reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$, and the mechanism:
- $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$; fast step
- $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$; slow step
- f) What's the rate law for the chemical reaction?

g) Rate law of what elementary step would agree with the experimentally determined the rate law?

1. Given the chemical reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$, and the mechanism:

 $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$; slow step $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$; fast step

f) What's the rate law for the chemical reaction?

g) Rate law of what elementary step would agree with the experimentally determined the rate law?

2) Draw potential energy diagrams to show:

a) An Exothermic Reaction:

b) Endothermic Reaction:

Label Activation Energy (E_a) on both diagrams a) and b) above.

2) Draw potential energy diagrams to show:

d) the effect of a catalyst in a chemical reaction.

3) The chemical reaction: $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$

follows Rate Law: rate = $k [NO_2] [F_2]$ What would be the molecularity of the rate determining step in the mechanism?

Reaction Mechanism

A set of elementary reactions which represent the overall reaction

© 2013 Pearson Education, Inc.

Reaction progress

© 2013 Pearson Education, Inc. CHEM 102, Spring 2015, LA IECH

13-22

Bond weakens

NC group begins to rotate

© 2013 Pearson Education, Inc.

CHEM 102, Spr

$NOCl(g) + NOCl(g) \longrightarrow 2 NO(g) + Cl_2(g)$

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc.

13-26

Mechanism Oxidation of Iodide Ion by Hydrogen Peroxide

 $2 \text{ OH}^- + 2 \text{ H}_3\text{O}^+ \xrightarrow{\text{fast}} 4 \text{ H}_2\text{O}$

Rate Law of Oxidation of lodide Ion by Hydrogen Peroxide

- Step 1.
- HOOH + $I^{-} \rightarrow HOI + OH^{-}$
- slow step rate determining step, suggests that the reaction is first order with regard to hydrogen peroxide and iodide ion
- rate = k[HOOH][I⁻]

4) The mechanism of a reaction is shown below. HOOH + $I^{-} \rightarrow HOI + OH^{-}$ (slow) HOI + $I^{-} \rightarrow I_{2} + OH^{-}$ (fast) $2OH^{-} + 2H_{3}O^{+} \rightarrow 4H_{2}O$ (fast)

a) What is the overall reaction?

b) Which compounds are intermediates?

4) The mechanism of a reaction is shown below. HOOH + $I^{-} \rightarrow HOI + OH^{-}$ (slow) HOI + $I^{-} \rightarrow I_{2} + OH^{-}$ (fast) $2OH^{-} + 2H_{3}O^{+} \rightarrow 4H_{2}O$ (fast)

c) Predict the rate law based on this mechanism.

d) What is the overall order of the reaction?

$$k = A e^{\frac{-E_a}{RT}}$$
Activation energy
Frequency factor Exponential factor

© 2013 Pearson Education, Inc.

Arrhenius Equation: Dependence of Rate Constant (k) on T

Rate constant (k) k = A e^{-E_a/RT}

A = frequency factor: A = p x z

- **E**_a = Activation energy
- R = gas constant
- **T = Kelvin temperature**
- **p** = collision factor

z = Orientation factor

As temperature increases, the fraction of molecules with enough energy to surmount the activation energy barrier also increases.

Energy

Arrhenius Equation: In form

An alternate form of the Arrhenius equation: $\mathbf{k} = \mathbf{A} \ \mathbf{e}^{\cdot \mathbf{E}_a / \mathbf{R} \mathbf{T}}$ $\ln k = -\left(\frac{\mathbf{E}a}{\mathbf{R}}\right) \left(\frac{1}{\mathbf{T}}\right)_{+} \ln A$

If ln k is plotted against 1/T, a straight line of slope -Ea/RT is obtained.

Activation energy - Ea

The energy that molecules must have in order to react.

5) For the reaction A + B \rightarrow C, the rate constant at 215 °C is 5.0 x 10⁻³ and the rate constant at 452° C is 1.2 x 10⁻¹.

a) How the rate constant is affected by increasing the temperature?

b)Write the form of Arrhenius equation and define the variables that fit the data for this problem:

5) For the reaction A + B \rightarrow C, the rate constant at 215 °C is 5.0 x 10⁻³ and the rate constant at 452° C is 1.2 x 10⁻¹.

c)What is the activation energy in kJ/mol?

d)What is the rate constant at 100°C.

Arrhenius Equation: Dependence of Rate Constant (k) on T

Rate constant (k) k = A e^{-E_a/RT}

- **E**_a = Activation energy
- R = gas constant
- **T = Kelvin temperature**
- A = frequency factor: A = p x z
- **p** = collision factor

z = Orientation factor

Orientation Factor: Some Unsuccessful Collisions

$I - + CH_3Br \longrightarrow ICH_3 + Br$ -

Unsuccessful collisions CH₃Br Successful collision

CHEM 102, Spring 2015, LA TECH

13-38

Calculation of E_a

 $k = A e^{-E_a/RT}$ $\ln k = \ln A - E_a/RT$ $\log k = \log A - E_a / 2.303 \text{ RT}$ using two set of values $\log k_1 = \log A - E_a / 2.303 \text{ RT}_1$ $\log k_2 = \log A - E_a / 2.303 RT_2$ $\log k_1 - \log k_2 = - E_a / 2.303 RT_2 + E_a / 2.303 RT_1$ $\log k_1 / k_2 = E_a / 2.303 R[1/T_1 - 1/T_2]$

Rate vs Temperature plot Reaction rates are temperature dependent

Here are rate constants for N₂O₅ decomposition at various temperatures.

13-40

T, ∘C	k x 10₄, s-1	
-------	--------------	--

20	0.235
25	0.469
30	0.933
35	1.82
40	3.62
45	6.29

Collision Model

- Three conditions must be met at the nano-scale
- level if a reaction is to occur:
- the molecules must collide;
- they must be positioned so that the reacting
- groups are together in a transition state between
- reactants and products;
- and the collision must have enough energy to
- form the transition state and convert it into products.

Effect of Concentration on Frequency of Bimolecular Collisions

13 - 43

Transition State: Activated Complex or Reaction Intermediates

an unstable arrangement of atoms that has the highest energy reached during the rearrangement of the reactant atoms to give products of a reaction

Catalyst

- A substance which speeds up the rate of a reaction while not being consumed Homogeneous Catalysis - a catalyst which is in the same phase as the reactants Heterogeneous Catalysis- a catalyst which is in the different phase as the reactants catalytic converter
 - solid catalyst working on gaseous materials

Conversion of NO to N₂ + O₂

...forms a bond with a platinum atom in the surface...

...and dissociates into an N atom and an O atom, each bonded to a platinum atom.

13-46

The N and O atoms migrate across the surface until they get close enough to another like atom to form N_2 or $O_2...$

Catalytic Converter

 $H_2O_{(g)} + HCs \xrightarrow{catalyst} CO_{(g)} + H_{2(g)}$ (unbalanced)

 $\begin{array}{rcl} \text{catalyst} \\ 2 \text{ H}_{2(g)} + 2 \text{ NO}_{(g)} & \rightarrow \text{ N}_{2(g)} + 2 \text{ H}_2\text{ O}_{(g)} \end{array}$

$$\begin{array}{ccc} & \text{catalyst} \\ \text{HCs} + \text{O}_{2(g)} & \rightarrow & \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)} \text{ (unbalanced)} \\ & \text{catalyst} \\ \text{CO}_{(g)} + \text{O}_{2(g)} & \rightarrow & \text{CO}_{2(g)} & \text{(unbalanced)} \end{array}$$

catalyst = Pt-NiO HCs = unburned hydrocarbons

Enzymes: Biological catalysts

Biological catalysts

- Typically are very large proteins.
- Permit reactions to 'go' at conditions that the body
- can tolerate.
- Can process millions of molecules every second. Are very **specific** - react with one or only a few types of molecules (**substrates**).

The active site

Enzymes are typically HUGE proteins, yet only a small part is actually involved in the reaction.

The active site has two basic components. catalytic site

binding site

13-40

Model of trios-phosphate-isomerase

Enzyme–Substrate Binding

13-50

© 2013 Pearson Education, Inc.

Maximum Velocity for an Enzyme Catalyzed Reaction

Substrate concentration —

Enzyme Activity Destroyed by Heat

Mechanisms with a Fast Initial Step

 $2 \text{ NO}_{(g)} + \text{Br}_{2(g)} \rightarrow 2 \text{NOBr}_{(g)}$ rate_{experimental} = k[NO]²[Br₂]

Mechanism of NO + Br₂

 $NO(g) + Br_2(g) \implies NOBr_2(g)$ fast

 $NOBr_2(g) + NO(g) \longrightarrow 2 NOBr(g)$ slow

 $Rate = k[NOBr_2][NO]$

13-54

Rate Constants for NO + Br₂

Step +1(forward), rate constant k₁ Step -1(backward), rate constant k₋₁ Step 2, rate constant k₂

rate_{Step+1} = rate_{Step-1} + rate_{Step2}

 $k_1[NO][Br_2] = k_1[NOBr_2] - k_2[NOBr_2]$

Relationships of Rate Constants

```
k_1[NO][Br_2] \sim k_1[NOBr_2]
thus
[NOBr_2] = (k_1/k_1)[NO][Br_2]
substituting into
rate = k_2[NOBr_2][NO]
rate = k_2((k_1/k_1)[NO][Br_2])[NO]
rate = (k_2k_1/k_1)[NO]^2[Br_2]
```

Chain Mechanisms

chain initiating step

- the step of a mechanism which
- starts the chain chain
- propagating step(s)
 - the step or steps which keeps the chain going

chain terminating step(s)

• the step or steps which break the chain

Chain Mechanisms

- combustion of gasoline in an internal combustion engine
- chain initiating step additives which generate
- free radicals, particles with unpaired electrons
- chain propagating step(s) steps which generate new free radicals
- chain terminating step(s)
- steps which do not generate new free radicals