Chemistry – A Molecular Approach, 1st Edition Nivaldo Tro

Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2008, Prentice Hall

Heating Your Home

- most homes burn fossil fuels to generate heat
- the amount the temperature of your home increases depends on several factors
 - \checkmark how much fuel is burned
 - \checkmark the volume of the house
 - \checkmark the amount of heat loss
 - \checkmark the efficiency of the burning process
 - \checkmark can you think of any others?

Nature of Energy

- even though Chemistry is the study of matter, energy effects matter
- **energy** is anything that has the capacity to do work
- work is a force acting over a distance ✓ Energy = Work = Force x Distance
- energy can be exchanged between objects through contact
 - ✓ collisions

Classification of Energy

- **Kinetic energy** is energy of motion or energy that is being transferred
 - ✓ thermal energy is kinetic

Classification of Energy

- **Potential energy** is energy that is stored in an object, or energy associated with the composition and position of the object
 - ✓ energy stored in the structure of a compound is potential

Tro, Chemistry: A Molecular Approach

Law of Conservation of Energy

- energy cannot be created or destroyed
 - ✓ First Law of Thermodynamics
- energy can be transferred between objects
- energy can be transformed from one form to another
 - \checkmark heat \rightarrow light \rightarrow sound

Some Forms of Energy

- Electrical
 - \checkmark kinetic energy associated with the flow of electrical charge
- Heat or Thermal Energy

 \checkmark kinetic energy associated with molecular motion

• Light or Radiant Energy

 \checkmark kinetic energy associated with energy transitions in an atom

- Nuclear
 - \checkmark potential energy in the nucleus of atoms
- Chemical
 - ✓ potential energy in the attachment of atoms or because of their position

Units of Energy

• the amount of kinetic energy an object has is directly proportional to its mass and velocity

 $\checkmark KE = \frac{1}{2}mv^2$

- when the mass is in kg and speed in m/s, the unit for kinetic energy is $\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
- 1 joule of energy is the amount of energy needed to move a 1 kg mass at a speed of 1 m/s

$$\checkmark 1 \mathbf{J} = 1 \frac{\mathbf{kg} \bullet \mathbf{m}^2}{\mathbf{s}^2}$$

 3.6×10^5 J or 0.10 kWh used in 1 hour

Copyright © 2008 Pearson Prentice Hall, Inc.

Units of Energy

• joule (J) is the amount of energy needed to move a 1 kg mass a distance of 1 meter

 $\checkmark 1 J = 1 N \cdot m = 1 \text{ kg} \cdot m^2/s^2$

- **calorie** (**cal**) is the amount of energy needed to raise one gram of water by 1°C
 - ✓ kcal = energy needed to raise 1000 g of water 1°C
 ✓ food Calories = kcals

Energy Conversion Factors

- 1 calorie (cal) = 4.184 joules (J) (exact)
- 1 Calorie (Cal) = 1000 calories (cal)
- 1 kilowatt-hour (kWh) = 3.60×10^6 joules (J)

Tro, Chemistry: A Molecular Approach

Energy Use

Unit	Energy Required to Raise Temperature of 1 g of Water by 1°C	Energy Required to Light 100-W Bulb for 1 hr	Energy used to Run 1 Mile (approx)	Energy Used by Average U.S. Citizen in 1 Day
joule (J)	4.18	3.60 x 10 ⁵	4.2 x 10 ⁵	9.0 x 10 ⁸
calorie (cal)	1.00	8.60 x 10 ⁴	1.0 x 10 ⁵	2.2 x 10 ⁸
Calorie (Cal)	0.00100	86.0	100.	2.2 x 10 ⁵
kWh	1.16 x 10 ⁻⁶	0.100	0.12	2.5×10^2

Energy Flow and Conservation of Energy

- we define the **system** as the material or process we are studying the energy changes within
- we define the **surroundings** as everything else in the universe
- Conservation of Energy requires that the total energy change in the system and the surrounding must be zero
 - $\checkmark \Delta Energy_{universe} = 0 = \Delta Energy_{system} + \Delta Energy_{surroundings}$
 - $\checkmark \Delta$ is the symbol that is used to mean change

➢ final amount − initial amount

Internal Energy

- the **internal energy** is the total amount of kinetic and potential energy a system possesses
- the change in the internal energy of a system only depends on the amount of energy in the system at the beginning and end
 - ✓ a state function is a mathematical function whose result only depends on the initial and final conditions, not on the process used

$$\checkmark \Delta E = E_{\text{final}} - E_{\text{initial}}$$
$$\checkmark \Delta E_{\text{reaction}} = E_{\text{products}} - E_{\text{reactants}}$$

State Function

A State Function Change in altitude depends only on the difference between the initial and final values, not on the path taken.

Copyright © 2008 Pearson Prentice Hall, Inc.

Energy Diagrams

- energy diagrams are a "graphical" way of showing the direction of energy flow during a process
- if the final condition has a larger amount of internal energy than the initial condition, the change in the internal energy will be +
- if the final condition has a smaller amount of internal energy than the initial condition, the change in the internal energy will be —

Energy Flow

- when energy flows out of a system, it must all flow into the surroundings
- when energy flows out of a system, ΔE_{system} is –
- when energy flows into the surroundings, $\Delta E_{surroundings}$ is +
- therefore:

 $-\Delta E_{\text{system}} = \Delta E_{\text{surroundings}} \quad \Delta E_{\text{sys}} < 0 \text{ (negative)}$

Copyright © 2008 Pearson Prentice Hall, Inc.

Energy Flow

- when energy flows into a system, it must all come from the surroundings
- when energy flows into a system, ΔE_{system} is +
- when energy flows out of the surroundings, $\Delta E_{surroundings}$ is –
- therefore:

 $\Delta E_{\text{system}} = -\Delta E_{\text{surroundings}} \qquad \Delta E_{\text{sys}} > 0 \text{ (positive)}$

How Is Energy Exchanged?

• energy is exchanged between the system and surroundings through heat and work

$$\checkmark q =$$
 heat (thermal) energy

- $\checkmark w =$ work energy
- $\checkmark q$ and w are NOT state functions, their value depends on the process

$\Delta E = q + w$

q (heat)	system gains heat energy +	system releases heat energy —	
w (work)	system gains energy from work +	system releases energy by doing work	
ΔE	system gains energy +	system releases energy	

Copyright © 2008 Pearson Prentice Hall, Inc.

• energy is exchanged between the system and surroundings through either heat exchange or work being done

Heat & Work

 on a smooth table, most of the kinetic energy is transferred from the first ball to the second – with a small amount lost through friction

(a) Smooth table

Heat & Work

 on a rough table, most of the kinetic energy of the first ball is lost through friction – less than half is transferred to the second

(b) Rough table

Heat Exchange

- heat is the exchange of thermal energy between the system and surroundings
- occurs when system and surroundings have a difference in temperature
- heat flows from matter with high temperature to matter with low temperature until both objects reach the same temperature

✓ thermal equilibrium

Quantity of Heat Energy Absorbed Heat Capacity

- when a system absorbs heat, its temperature increases
- the increase in temperature is directly proportional to the amount of heat absorbed
- the proportionality constant is called the heat capacity, C
 ✓ units of C are J/°C or J/K

$q = \mathbf{C} \mathbf{X} \Delta \mathbf{T}$

- the heat capacity of an object depends on its mass
 - ✓ 200 g of water requires twice as much heat to raise its temperature by 1°C than 100 g of water
- the heat capacity of an object depends on the type of material
 ✓ 1000 J of heat energy will raise the temperature of 100 g of sand 12°C, but only raise the temperature of 100 g of water by 2.4°C

Specific Heat Capacity

- measure of a substance's *intrinsic* ability to absorb heat
- the **specific heat capacity** is the amount of heat energy required to raise the temperature of one gram of a substance 1°C

✓ C_s ✓ units are J/(g·°C)

- the **molar heat capacity** is the amount of heat energy required to raise the temperature of one mole of a substance 1°C
- the rather high specific heat of water allows it to absorb a lot of heat energy without large increases in temperature
 - ✓ keeping ocean shore communities and beaches cool in the summer
 - \checkmark allows it to be used as an effective coolant to absorb heat

Tro, Chemistry: A Molecular Approach

TABLE 6.4	Specific Heat Capacities of Some Common Substances
Substance	Specific Heat Capacity, <i>C</i> s (J/g • °C) [*]
Elements	
Lead	0.128
Gold	0.128
Silver	0.235
Copper	0.385
Iron	0.449
Aluminum	0.903
Compounds	
Ethanol	2.42
Water	4.18
Materials	
Glass (Pyrex)	0.75
Granite	0.79
Sand	0.84

*At 298 K.

Copyright © 2008 Pearson Prentice Hall, Inc.

Quantifying Heat Energy

- the heat capacity of an object is proportional to its mass and the specific heat of the material
- so we can calculate the quantity of heat absorbed by an object if we know the mass, the specific heat, and the temperature change of the object

Heat = (mass) **x** (specific heat capacity) **x** (temp. change) $q = (m) \mathbf{x} (C_s) \mathbf{x} (\Delta T)$

Example 6.2 – How much heat is absorbed by a copper penny with mass 3.10 g whose temperature rises from -8.0° C to 37.0°C?

•	Sort	Given:	$T_1 = -8.0^{\circ}C, T_2 = 37.0^{\circ}C, m = 3.10 \text{ g}$
	Information	Find:	$q,{ m J}$
•	Strategize	Concept Plan:	$C_{s} m, \Delta T \Longrightarrow q$
			$q = \mathbf{m} \bullet \mathbf{C}_s \bullet \Delta \mathbf{T}$
		Relationships:	$q = m \cdot C_s \cdot \Delta T$ $C_s = 0.385 \text{ J/g (Table 6.4)}$
•	Follow the	Solution:	$a - \mathbf{m} \bullet \mathbf{C} \bullet \mathbf{\Delta} \mathbf{T}$
	Concept Plan to Solve the problem	$\Delta T = T_2 - T_1$ $\Delta T = 37.0 ^{\circ}\text{C} - (-8.0)^{\circ}$ = 45.0 $^{\circ}\text{C}$	$q = m \circ C_{s} \circ \Delta T$ = (3.10g) • (0.385 $\frac{J}{g \circ c}$) • (45.0 °C) = 53.7 J
•	Check	Check:	the unit and sign are correct

Pressure -Volume Work

- PV work is work that is the result of a volume change against an external pressure
- when gases expand, ΔV is +, but the system is doing work on the surroundings so w is —
- as long as the external pressure is kept constant

—Work = External Pressure **x** Change in Volume

 $w = -\mathbf{P}\Delta\mathbf{V}$

✓ to convert the units to joules use $101.3 \text{ J} = 1 \text{ atm} \cdot \text{L}$

Tro, Chemistry: A Molecular Approach

Example 6.3 – If a balloon is inflated from 0.100 L to 1.85 L against an external pressure of 1.00 atm, how much work is done?

Given:	V_1 =0.100 L, V_2 =1.85 L, P=1.00 atm
Find:	<i>w</i> , J
Concept Plan:	$(\mathbf{P}, \Delta \mathbf{V}) \Longrightarrow w$
	$w = -P \bullet \Delta V$
Relationships:	101.3 J = 1 atm L
Solution:	101 2 I
$\Delta \mathbf{V} = \mathbf{V}_2 - \mathbf{V}_1$	$w = -P \bullet \Delta V \qquad -1.75 \text{ atm} \bullet L \times \frac{101.5 \text{ J}}{101.5 \text{ J}}$
$\Delta V = 1.85 L -$	$0.100 L = -(1.00 atm) \bullet (1.75 L) \qquad 1 atm \bullet L$
=1.75 L	$= -1.75 \text{ atm} \bullet L = -1 / / J$
Check:	the unit and sign are correct

Exchanging Energy Between System and Surroundings

• exchange of heat energy

q = mass x specific heat x Δ Temperature

• exchange of work

w = -Pressure x Δ Volume

Tro, Chemistry: A Molecular Approach

Measuring ΔE , Calorimetry at Constant Volume

- since $\Delta E = q + w$, we can determine ΔE by measuring q and w
- in practice, it is easiest to do a process in such a way that there is no change in volume, *w* = 0

✓ at constant volume, $\Delta E_{\text{system}} = q_{\text{system}}$

- in practice, it is not possible to observe the temperature changes of the individual chemicals involved in a reaction – so instead, we use an insulated, controlled surroundings and measure the temperature change in it
- the surroundings is called a **bomb calorimeter** and is usually made of a sealed, insulated container filled with water

$$q_{\text{surroundings}} = q_{\text{calorimeter}} = -q_{\text{system}}$$

 $-\Delta E_{\text{reaction}} = q_{cal} = C_{cal} \ge \Delta \mathbf{T}$

Bomb Calorimeter

used to measure ∆E
 because it is a
 constant volume
 system

Ignition wire Stirrer Thermometer Water Tightly sealed "bomb"

The Bomb Calorimeter

Sample

Oxygen

Example 6.4 – When 1.010 g of sugar is burned in a bomb calorimeter, the temperature rises from 24.92°C to 28.33°C. If $C_{cal} = 4.90 \text{ kJ/°C}$, find ΔE for burning 1 mole

Given:	$1.010 \text{ g } \text{C}_{12}\text{H}_{22}\text{O}_{11}, \text{ T}_1 = 24.92^{\circ}\text{C}, \text{ T}_2 = 28.33^{\circ}\text{C}, \text{ C}_{cal} = 4.90 \text{ kJ/}^{\circ}\text{C}$		
Find:	$\Delta E_{rxn}, kJ/mol$		
Concept Plan:	$\boxed{\mathbf{C}_{cal}, \Delta \mathbf{T} \Rightarrow \mathbf{q}_{cal}} \qquad $		
	$q_{\rm cal} = C_{\rm cal} \times \Delta T$ $q_{\rm rxn} = -q_{\rm cal}$		
Relationships:	$q_{cal} = C_{cal} \times \Delta T = -q_{rxn}$ MM $C_{12}H_{22}O_{11} = 342.3 \text{ g/mol}$ $\Delta E = \frac{q_{rxn}}{\text{mol } C_{12}H_{22}O_{11}}$		
Solution:	a = 167 kI		
$q_{\text{tall}} = C_{\text{tall}} + \Delta T_{22}$	$\frac{1 \mod C_{12}H_{22}O_{11}}{242.2 \text{ for } M} \Delta E_{9506 \times 10^{-3}} \frac{q_{\text{rxn}}}{\text{mol}} = \frac{-10.7 \text{ KJ}}{2.5006 \times 10^{-3}}$	1	
=4.99	16.7 kJ mol $C_{12}H_{22}O_{11}$ 2.5906×10° mo	1	
$q_{\rm rxn}^{\rm AT} = 3.4 q_{\rm cal}^{\rm oC} = -$	-16.7 kJ = -5.66×10^3 kJ/mol		
Check:	the units and sign are correct		
	31		

Enthalpy

- the **enthalpy**, **H**, of a system is the sum of the internal energy of the system and the product of pressure and volume
 - \checkmark H is a state function

 $\mathbf{H} = \mathbf{E} + \mathbf{P}\mathbf{V}$

• the enthalpy change, ΔH , of a reaction is the heat evolved in a reaction at constant pressure

 $\Delta H_{\text{reaction}} = q_{\text{reaction at constant pressure}}$

• usually ΔH and ΔE are similar in value, the difference is largest for reactions that produce or use large quantities of gas

- when ΔH is –, heat is being released by the system
- reactions that release heat are called **exothermic reactions**
- when ΔH is +, heat is being absorbed by the system
- reactions that release heat are called **endothermic reactions**
- chemical heat packs contain iron filings that are oxidized in an exothermic reaction your hands get warm because the released heat of the reaction is absorbed by your hands
- chemical cold packs contain NH₄NO₃ that dissolves in water in an endothermic process — your hands get cold because they are giving away your heat to the reaction

Molecular View of Exothermic Reactions

- in an exothermic reaction, the temperature rises due to release of thermal energy
- this extra thermal energy comes from the conversion of some of the chemical potential energy in the reactants into kinetic energy in the form of heat
- during the course of a reaction, old bonds are broken and new bonds made
- the products of the reaction have less chemical potential energy than the reactants
- the difference in energy is released as heat

Copyright © 2008 Pearson Prentice Hall, Inc

Molecular View of Endothermic Reactions

- in an endothermic reaction, the temperature drops due to absorption of thermal energy
- the required thermal energy comes from the surroundings
- during the course of a reaction, old bonds are broken and new bonds made
- the products of the reaction have more chemical potential energy than the reactants
- to acquire this extra energy, some of the thermal energy of the surroundings is converted into chemical potential energy stored in the products

Enthalpy of Reaction

• the enthalpy change in a chemical reaction is an extensive property

 \checkmark the more reactants you use, the larger the enthalpy change

• by convention, we calculate the enthalpy change for the number of moles of reactants in the reaction as written $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g) \qquad \Delta H = -2044 \text{ kJ}$

 $\frac{-2044 \text{ kJ}}{1 \text{ mol } \text{C}_{3}\text{H}_{8}} \text{ or } \frac{1 \text{ mol } \text{C}_{3}\text{H}_{8}}{-2044 \text{ kJ}}$ $\frac{-2044 \text{ kJ}}{5 \text{ mol } \text{O}_{2}} \text{ or } \frac{5 \text{ mol } \text{O}_{2}}{-2044 \text{ kJ}}$

 $\Delta H_{\text{reaction}}$ for 1 mol C₃H₈ = -2044 kJ

 $\Delta H_{\text{reaction}}$ for 5 mol O₂ = -2044 kJ

Example 6.6 – How much heat is evolved in the complete combustion of 13.2 kg of $C_3H_8(g)$?

Measuring ∆H Calorimetry at Constant Pressure

- reactions done in aqueous solution are at constant pressure
 - \checkmark open to the atmosphere
- the calorimeter is often nested foam cups containing the solution

 $q_{\text{reaction}} = -q_{\text{solution}} = -(\text{mass}_{\text{solution}} \ge C_{\text{s, solution}} \ge \Delta T)$

 $\Delta H_{\text{reaction}} = q_{\text{constant pressure}} = q_{\text{reaction}}$ \checkmark to get $\Delta H_{\text{reaction}}$ per mol, divide by the number of moles

Copyright © 2008 Pearson Prentice Hall, Inc.

Example 6.7 – What is $\Delta H_{rxn/mol Mg}$ for the reaction Mg(s) + 2 HCl(aq) \rightarrow MgCl₂(aq) + H₂(g) if 0.158 g Mg reacts in 100.0 mL of solution changes the temperature from 25.6°C to 32.8°C?

Example 6.7 – What is $\Delta H_{rxn/mol Mg}$ for the reaction Mg(s) + 2 HCl(aq) \rightarrow MgCl₂(aq) + H₂(g) if 0.158 g Mg reacts in 100.0 mL of solution to change the temperature from 25.6°C to 32.8°C?

Given:	0.158 g Mg, 100.0 mL sol'n, $T_1 = 25.6^{\circ}C$, $T_2 = 32.8^{\circ}C$, $C_s = 4.18 \text{ J/}^{\circ}C$,		
	$d_{soln} = 1.00 \text{ g/mL}$		
Find:	ΔH_{rxn} , J/mol Mg		
Concept Plan:	$\mathbf{m}, \mathbf{C}_{\mathrm{s}}, \Delta \mathbf{T} \Longrightarrow \mathbf{q}_{\mathrm{soln}} \qquad $		
	$q_{\rm soln} = {\rm m} \times {\rm C}_{\rm s} \times \Delta {\rm T}$ $q_{\rm rxn} = -q_{\rm soln}$		
Relationships:	$q_{\rm soln} = m \times C_{\rm s} \times \Delta T = -q_{\rm rxn} \qquad \Delta H = \frac{q_{\rm rxn}}{\rm mol \ M \ g}$		
Solution:			
$q_{\rm soln}^{100.0\rm pt} = m \times \frac{1.00\rm g}{G_{\rm pt}}$	$\Delta \overline{T}^{1.00 \times 10^2 g}$ $\Delta H = -\frac{q_{rxn}}{q_{rxn}} = -\frac{-3.0 \times 10^3 J}{-3.0 \times 10^3 J}$		
$\bigoplus_{\substack{1500}{10^2}\times\frac{4.18}{24.31}} = 5.49742\% = 3.01 \times 10^3 \text{ J} \text{mol Mg} 6.4994 \times 10^{-3} \text{ mol}$			
$q_{1} = -4.6 \times 10^{5} \text{ J/mol}$			
Check:	the units and sign are correct		
	40		

Relationships Involving ΔH_{rxn}

• when reaction is multiplied by a factor, ΔH_{rxn} is multiplied by that factor

✓ because
$$\Delta H_{rxn}$$
 is extensive
 $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393.5 \text{ kJ}$
 $2 C(s) + 2 O_2(g) \rightarrow 2 CO_2(g) \Delta H = 2(-393.5 \text{ kJ}) = 787.0 \text{ kJ}$

• if a reaction is reversed, then the sign of ΔH is reversed

 $CO_2(g) \rightarrow C(s) + O_2(g)$ $\Delta H = +393.5 \text{ kJ}$

Relationships Involving ΔH_{rxn} Hess's Law

• if a reaction can be expressed as a series of steps, then the ΔH_{rxn} for the overall reaction is the sum of the heats of reaction for each step

Hess's Law

The change in enthalpy for a stepwise process is the sum of the enthalpy changes of the steps.

Copyright © 2008 Pearson Prentice Hall, Inc.

Sample – Hess's Law

Given the following information: $2 \operatorname{NO}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{NO}_{2}(g) \qquad \Delta \mathrm{H}^{\circ} = -173 \text{ kJ}$ $2 \operatorname{N}_{2}(g) + 5 \operatorname{O}_{2}(g) + 2 \operatorname{H}_{2}\mathrm{O}(l) \rightarrow 4 \operatorname{HNO}_{3}(aq) \qquad \Delta \mathrm{H}^{\circ} = -255 \text{ kJ}$ $\operatorname{N}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{NO}(g) \qquad \Delta \mathrm{H}^{\circ} = +181 \text{ kJ}$

Calculate the ΔH° for the reaction below: $3 \operatorname{NO}_2(g) + \operatorname{H}_2O(l) \rightarrow 2 \operatorname{HNO}_3(aq) + \operatorname{NO}(g) \quad \Delta H^{\circ} = ?$

 $\begin{array}{ll} [2 \text{ NO}_{2}(g) \rightarrow 2 \text{ NO}(g) + 05(g)](g)].5 & \Delta H^{\circ} = (\pm 269153 \text{ JJ}) \\ [2 \text{ N}_{2}(g) + 3.5(g)g)g) + 2 \text{ HEQ}(0(l) \rightarrow 4 \text{ HNO}(g)g)g)] & 0.5 \Delta H^{\circ} = (0.528255) \text{ kJ}) \\ \underline{[2 \text{ NO}(g) \rightarrow N_{2}(g) + Q_{2}(g)]} & \Delta H^{\circ} = -181 \text{ kJ} \\ 3 \text{ NO}_{2}(g) + \text{H}_{2}O(l) \rightarrow 2 \text{ HNO}_{3}(aq) + \text{ NO}(g) & \Delta H^{\circ} = -49 \text{ kJ} \end{array}$

Standard Conditions

- the **standard state** is the state of a material at a defined set of conditions
 - \checkmark pure gas at exactly 1 atm pressure
 - ✓ pure solid or liquid in its most stable form at exactly 1 atm pressure and temperature of interest
 - ➤ usually 25°C
 - $\checkmark\,$ substance in a solution with concentration 1 M
- the standard enthalpy change, ΔH° , is the enthalpy change when all reactants and products are in their standard states
- the standard enthalpy of formation, ΔH_f° , is the enthalpy change for the reaction forming 1 mole of a pure compound from its constituent elements
 - \checkmark the elements must be in their standard states
 - ✓ the ∆H_f° for a pure element in its standard state = 0 kJ/mol
 ➢ by definition

Formation Reactions

- reactions of elements in their standard state to form 1 mole of a pure compound
 - ✓ if you are not sure what the standard state of an element is, find the form in Appendix IIB that has a $\Delta H_f^{\circ} = 0$
 - ✓ since the definition requires 1 mole of compound be made, the coefficients of the reactants may be fractions

Writing Formation Reactions

Write the formation reaction for CO(g)

• the formation reaction is the reaction between the elements in the compound, which are C and O

 $\mathrm{C} + \mathrm{O} \to \mathrm{CO}(g)$

- the elements must be in their standard state
 - ✓ there are several forms of solid C, but the one with $\Delta H_f^{\circ} = 0$ is graphite
 - \checkmark oxygen's standard state is the diatomic gas

 $C(s, graphite) + O_2(g) \rightarrow CO(g)$

- the equation must be balanced, but the coefficient of the product compound must be 1
 - ✓ use whatever coefficient in front of the reactants is necessary to make the atoms on both sides equal without changing the product coefficient

$$C(s, graphite) + \frac{1}{2} O_2(g) \rightarrow CO(g)$$

Calculating Standard Enthalpy Change for a Reaction

- any reaction can be written as the sum of formation reactions (or the reverse of formation reactions) for the reactants and products
- the ΔH° for the reaction is then the sum of the ΔH_{f}° for the component reactions

$\Delta H^{\circ}_{reaction} = \Sigma n \Delta H^{\circ}_{f}(products) - \Sigma n \Delta H^{\circ}_{f}(reactants)$

- $\checkmark \Sigma$ means sum
- \checkmark n is the coefficient of the reaction

Calculating the Enthalpy Change for the Combustion of Methane

Copyright © 2008 Pearson Prentice Hall, Inc.

Sample - Calculate the Enthalpy Change in the Reaction $2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(l)$

1. Write formation reactions for each compound and determine the ΔH_f° for each

2 C(s, gr) + H₂(g) → C₂H₂(g) $\Delta H_{f}^{\circ} = +227.4 \text{ kJ/mol}$ C(s, gr) + O₂(g) → CO₂(g) $\Delta H_{f}^{\circ} = -393.5 \text{ kJ/mol}$ H₂(g) + ¹/₂ O₂(g) → H₂O(l) $\Delta H_{f}^{\circ} = -285.8 \text{ kJ/mol}$

Sample - Calculate the Enthalpy Change in the Reaction $2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(l)$

2. Arrange equations so they add up to desired reaction $2 C_2H_2(g) \rightarrow 4 C(s) + 2 H_2(g) \quad \Delta H^\circ = 2(-227.4) \text{ kJ}$ $4 C(s) + 4 O_2(g) \rightarrow 4CO_2(g) \quad \Delta H^\circ = 4(-393.5) \text{ kJ}$ $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l) \quad \Delta H^\circ = 2(-285.8) \text{ kJ}$ $2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(l) \quad \Delta H = -2600.4 \text{ kJ}$ Sample - Calculate the Enthalpy Change in the Reaction $2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(l)$

 $\Delta H^{\circ}_{reaction} = \Sigma n \Delta H_{f}^{\circ}(products) - \Sigma n \Delta H_{f}^{\circ}(reactants)$

$$\Delta H_{rxn} = [(4 \cdot \Delta H_{CO2} + 2 \cdot \Delta H_{H2O}) - (2 \cdot \Delta H_{C2H2} + 5 \cdot \Delta H_{O2})]$$

$$\Delta H_{rxn} = [(4 \cdot (-393.5) + 2 \cdot (-285.8)) - (2 \cdot (+227.4) + 5 \cdot (0))]$$

$$\Delta H_{\rm rxn} = -2600.4 \text{ kJ}$$

Tro, Chemistry: A Molecular Approach

Example 6.11 – How many kg of octane must be combusted to supply 1.0 x 10¹¹ kJ of energy?

Energy Use and the Environment

- in the U.S., each person uses over 10⁵ kWh of energy per year
- most comes from the combustion of fossil fuels

 \checkmark combustible materials that originate from ancient life

 $C(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H^{\circ}_{rxn} = -393.5 \text{ kJ}$ $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \qquad \Delta H^{\circ}_{rxn} = -802.3 \text{ kJ}$

 $C_8H_{18}(g) + 12.5 O_2(g) \rightarrow 8 CO_2(g) + 9 H_2O(g)$ $\Delta H^{\circ}_{rxn} = -5074.1 \text{ kJ}$

- fossil fuels cannot be replenished
- at current rates of consumption, oil and natural gas supplies will be depleted in 50 – 100 yrs.

Energy Consumption

The Effect of Combustion Products on Our Environment

- because of additives and impurities in the fossil fuel, incomplete combustion and side reactions, harmful materials are added to the atmosphere when fossil fuels are burned for energy
- therefore fossil fuel emissions contribute to air pollution, acid rain, and global warming

Global Warming

- CO₂ is a greenhouse gas
 - ✓ it allows light from the sun to reach the earth, but does not allow the heat (infrared light) reflected off the earth to escape into outer space

 \succ it acts like a blanket

- CO₂ levels in the atmosphere have been steadily increasing
- current observations suggest that the average global air temperature has risen 0.6°C in the past 100 yrs.
- atmospheric models suggest that the warming effect could worsen if CO₂ levels are not curbed
- some models predict that the result will be more severe storms, more floods and droughts, shifts in agricultural zones, rising sea levels, and changes in habitats

Atmospheric Carbon Dioxide

Copyright © 2008 Pearson Prentice Hall, Inc.

Renewable Energy

- our greatest unlimited supply of energy is the sun
- new technologies are being developed to capture the energy of sunlight
 - ✓ parabolic troughs, solar power towers, and dish engines concentrate the sun's light to generate electricity
 - ✓ solar energy used to decompose water into $H_2(g)$ and $O_2(g)$; the H_2 can then be used by fuel cells to generate electricity

 $H_2(g) + \frac{1}{2} O_2(g) \to H_2O(l) \quad \Delta H^{\circ}_{rxn} = -285.8 \text{ kJ}$

- hydroelectric power
- wind power

Tro, Chemistry: A Molecular Approach